1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
//! Zero-cost Futures in Rust //! //! This library is an implementation of futures in Rust which aims to provide //! a robust implementation of handling asynchronous computations, ergonomic //! composition and usage, and zero-cost abstractions over what would otherwise //! be written by hand. //! //! Futures are a concept for an object which is a proxy for another value that //! may not be ready yet. For example issuing an HTTP request may return a //! future for the HTTP response, as it probably hasn't arrived yet. With an //! object representing a value that will eventually be available, futures allow //! for powerful composition of tasks through basic combinators that can perform //! operations like chaining computations, changing the types of futures, or //! waiting for two futures to complete at the same time. //! //! You can find extensive tutorials and documentations at [https://tokio.rs] //! for both this crate (asynchronous programming in general) as well as the //! Tokio stack to perform async I/O with. //! //! [https://tokio.rs]: https://tokio.rs //! //! ## Installation //! //! Add this to your `Cargo.toml`: //! //! ```toml //! [dependencies] //! futures = "0.1" //! ``` //! //! ## Examples //! //! Let's take a look at a few examples of how futures might be used: //! //! ``` //! extern crate futures; //! //! use std::io; //! use std::time::Duration; //! use futures::prelude::*; //! use futures::future::Map; //! //! // A future is actually a trait implementation, so we can generically take a //! // future of any integer and return back a future that will resolve to that //! // value plus 10 more. //! // //! // Note here that like iterators, we're returning the `Map` combinator in //! // the futures crate, not a boxed abstraction. This is a zero-cost //! // construction of a future. //! fn add_ten<F>(future: F) -> Map<F, fn(i32) -> i32> //! where F: Future<Item=i32>, //! { //! fn add(a: i32) -> i32 { a + 10 } //! future.map(add) //! } //! //! // Not only can we modify one future, but we can even compose them together! //! // Here we have a function which takes two futures as input, and returns a //! // future that will calculate the sum of their two values. //! // //! // Above we saw a direct return value of the `Map` combinator, but //! // performance isn't always critical and sometimes it's more ergonomic to //! // return a trait object like we do here. Note though that there's only one //! // allocation here, not any for the intermediate futures. //! fn add<'a, A, B>(a: A, b: B) -> Box<Future<Item=i32, Error=A::Error> + 'a> //! where A: Future<Item=i32> + 'a, //! B: Future<Item=i32, Error=A::Error> + 'a, //! { //! Box::new(a.join(b).map(|(a, b)| a + b)) //! } //! //! // Futures also allow chaining computations together, starting another after //! // the previous finishes. Here we wait for the first computation to finish, //! // and then decide what to do depending on the result. //! fn download_timeout(url: &str, //! timeout_dur: Duration) //! -> Box<Future<Item=Vec<u8>, Error=io::Error>> { //! use std::io; //! use std::net::{SocketAddr, TcpStream}; //! //! type IoFuture<T> = Box<Future<Item=T, Error=io::Error>>; //! //! // First thing to do is we need to resolve our URL to an address. This //! // will likely perform a DNS lookup which may take some time. //! let addr = resolve(url); //! //! // After we acquire the address, we next want to open up a TCP //! // connection. //! let tcp = addr.and_then(|addr| connect(&addr)); //! //! // After the TCP connection is established and ready to go, we're off to //! // the races! //! let data = tcp.and_then(|conn| download(conn)); //! //! // That all might take awhile, though, so let's not wait too long for it //! // to all come back. The `select` combinator here returns a future which //! // resolves to the first value that's ready plus the next future. //! // //! // Note we can also use the `then` combinator which is similar to //! // `and_then` above except that it receives the result of the //! // computation, not just the successful value. //! // //! // Again note that all the above calls to `and_then` and the below calls //! // to `map` and such require no allocations. We only ever allocate once //! // we hit the `Box::new()` call at the end here, which means we've built //! // up a relatively involved computation with only one box, and even that //! // was optional! //! //! let data = data.map(Ok); //! let timeout = timeout(timeout_dur).map(Err); //! //! let ret = data.select(timeout).then(|result| { //! match result { //! // One future succeeded, and it was the one which was //! // downloading data from the connection. //! Ok((Ok(data), _other_future)) => Ok(data), //! //! // The timeout fired, and otherwise no error was found, so //! // we translate this to an error. //! Ok((Err(_timeout), _other_future)) => { //! Err(io::Error::new(io::ErrorKind::Other, "timeout")) //! } //! //! // A normal I/O error happened, so we pass that on through. //! Err((e, _other_future)) => Err(e), //! } //! }); //! return Box::new(ret); //! //! fn resolve(url: &str) -> IoFuture<SocketAddr> { //! // ... //! # panic!("unimplemented"); //! } //! //! fn connect(hostname: &SocketAddr) -> IoFuture<TcpStream> { //! // ... //! # panic!("unimplemented"); //! } //! //! fn download(stream: TcpStream) -> IoFuture<Vec<u8>> { //! // ... //! # panic!("unimplemented"); //! } //! //! fn timeout(stream: Duration) -> IoFuture<()> { //! // ... //! # panic!("unimplemented"); //! } //! } //! # fn main() {} //! ``` //! //! Some more information can also be found in the [README] for now, but //! otherwise feel free to jump in to the docs below! //! //! [README]: https://github.com/rust-lang-nursery/futures-rs#futures-rs #![no_std] #![deny(missing_docs, missing_debug_implementations)] #![doc(html_root_url = "https://docs.rs/futures/0.1")] #![cfg_attr(feature = "nightly", feature(pin))] #[macro_use] #[cfg(feature = "use_std")] extern crate std; macro_rules! if_std { ($($i:item)*) => ($( #[cfg(feature = "use_std")] $i )*) } #[macro_use] mod poll; pub use poll::{Poll, Async, AsyncSink, StartSend}; pub mod future; pub use future::{Future, IntoFuture}; pub mod stream; pub use stream::Stream; pub mod sink; pub use sink::Sink; #[deprecated(since = "0.1.4", note = "import through the future module instead")] #[cfg(feature = "with-deprecated")] #[doc(hidden)] pub use future::{done, empty, failed, finished, lazy}; #[doc(hidden)] #[cfg(feature = "with-deprecated")] #[deprecated(since = "0.1.4", note = "import through the future module instead")] pub use future::{ Done, Empty, Failed, Finished, Lazy, AndThen, Flatten, FlattenStream, Fuse, IntoStream, Join, Join3, Join4, Join5, Map, MapErr, OrElse, Select, SelectNext, Then }; #[cfg(feature = "use_std")] mod lock; mod task_impl; mod resultstream; pub mod task; pub mod executor; #[cfg(feature = "use_std")] pub mod sync; #[cfg(feature = "use_std")] pub mod unsync; if_std! { #[doc(hidden)] #[deprecated(since = "0.1.4", note = "use sync::oneshot::channel instead")] #[cfg(feature = "with-deprecated")] pub use sync::oneshot::channel as oneshot; #[doc(hidden)] #[deprecated(since = "0.1.4", note = "use sync::oneshot::Receiver instead")] #[cfg(feature = "with-deprecated")] pub use sync::oneshot::Receiver as Oneshot; #[doc(hidden)] #[deprecated(since = "0.1.4", note = "use sync::oneshot::Sender instead")] #[cfg(feature = "with-deprecated")] pub use sync::oneshot::Sender as Complete; #[doc(hidden)] #[deprecated(since = "0.1.4", note = "use sync::oneshot::Canceled instead")] #[cfg(feature = "with-deprecated")] pub use sync::oneshot::Canceled; #[doc(hidden)] #[deprecated(since = "0.1.4", note = "import through the future module instead")] #[cfg(feature = "with-deprecated")] #[allow(deprecated)] pub use future::{BoxFuture, collect, select_all, select_ok}; #[doc(hidden)] #[deprecated(since = "0.1.4", note = "import through the future module instead")] #[cfg(feature = "with-deprecated")] pub use future::{SelectAll, SelectAllNext, Collect, SelectOk}; } /// A "prelude" for crates using the `futures` crate. /// /// This prelude is similar to the standard library's prelude in that you'll /// almost always want to import its entire contents, but unlike the standard /// library's prelude you'll have to do so manually. An example of using this is: /// /// ``` /// use futures::prelude::*; /// ``` /// /// We may add items to this over time as they become ubiquitous as well, but /// otherwise this should help cut down on futures-related imports when you're /// working with the `futures` crate! pub mod prelude { #[doc(no_inline)] pub use {Future, Stream, Sink, Async, AsyncSink, Poll, StartSend}; #[doc(no_inline)] pub use IntoFuture; }