1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
// Copyright 2017 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// https://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! A distribution uniformly sampling numbers within a given range.
//!
//! [`Uniform`] is the standard distribution to sample uniformly from a range;
//! e.g. `Uniform::new_inclusive(1, 6)` can sample integers from 1 to 6, like a
//! standard die. [`Rng::gen_range`] supports any type supported by
//! [`Uniform`].
//!
//! This distribution is provided with support for several primitive types
//! (all integer and floating-point types) as well as `std::time::Duration`,
//! and supports extension to user-defined types via a type-specific *back-end*
//! implementation.
//!
//! The types [`UniformInt`], [`UniformFloat`] and [`UniformDuration`] are the
//! back-ends supporting sampling from primitive integer and floating-point
//! ranges as well as from `std::time::Duration`; these types do not normally
//! need to be used directly (unless implementing a derived back-end).
//!
//! # Example usage
//!
//! ```
//! use rand::{Rng, thread_rng};
//! use rand::distributions::Uniform;
//! 
//! let mut rng = thread_rng();
//! let side = Uniform::new(-10.0, 10.0);
//! 
//! // sample between 1 and 10 points
//! for _ in 0..rng.gen_range(1, 11) {
//!     // sample a point from the square with sides -10 - 10 in two dimensions
//!     let (x, y) = (rng.sample(side), rng.sample(side));
//!     println!("Point: {}, {}", x, y);
//! }
//! ```
//!
//! # Extending `Uniform` to support a custom type
//!
//! To extend [`Uniform`] to support your own types, write a back-end which
//! implements the [`UniformSampler`] trait, then implement the [`SampleUniform`]
//! helper trait to "register" your back-end. See the `MyF32` example below.
//!
//! At a minimum, the back-end needs to store any parameters needed for sampling
//! (e.g. the target range) and implement `new`, `new_inclusive` and `sample`.
//! Those methods should include an assert to check the range is valid (i.e.
//! `low < high`). The example below merely wraps another back-end.
//!
//! ```
//! use rand::prelude::*;
//! use rand::distributions::uniform::{Uniform, SampleUniform,
//!         UniformSampler, UniformFloat};
//!
//! struct MyF32(f32);
//!
//! #[derive(Clone, Copy, Debug)]
//! struct UniformMyF32 {
//!     inner: UniformFloat<f32>,
//! }
//!
//! impl UniformSampler for UniformMyF32 {
//!     type X = MyF32;
//!     fn new(low: Self::X, high: Self::X) -> Self {
//!         UniformMyF32 {
//!             inner: UniformFloat::<f32>::new(low.0, high.0),
//!         }
//!     }
//!     fn new_inclusive(low: Self::X, high: Self::X) -> Self {
//!         UniformSampler::new(low, high)
//!     }
//!     fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
//!         MyF32(self.inner.sample(rng))
//!     }
//! }
//!
//! impl SampleUniform for MyF32 {
//!     type Sampler = UniformMyF32;
//! }
//!
//! let (low, high) = (MyF32(17.0f32), MyF32(22.0f32));
//! let uniform = Uniform::new(low, high);
//! let x = uniform.sample(&mut thread_rng());
//! ```
//!
//! [`Uniform`]: struct.Uniform.html
//! [`Rng::gen_range`]: ../../trait.Rng.html#method.gen_range
//! [`SampleUniform`]: trait.SampleUniform.html
//! [`UniformSampler`]: trait.UniformSampler.html
//! [`UniformInt`]: struct.UniformInt.html
//! [`UniformFloat`]: struct.UniformFloat.html
//! [`UniformDuration`]: struct.UniformDuration.html

#[cfg(feature = "std")]
use std::time::Duration;

use Rng;
use distributions::Distribution;
use distributions::float::IntoFloat;

/// Sample values uniformly between two bounds.
///
/// [`Uniform::new`] and [`Uniform::new_inclusive`] construct a uniform
/// distribution sampling from the given range; these functions may do extra
/// work up front to make sampling of multiple values faster.
///
/// When sampling from a constant range, many calculations can happen at
/// compile-time and all methods should be fast; for floating-point ranges and
/// the full range of integer types this should have comparable performance to
/// the `Standard` distribution.
///
/// Steps are taken to avoid bias which might be present in naive
/// implementations; for example `rng.gen::<u8>() % 170` samples from the range
/// `[0, 169]` but is twice as likely to select numbers less than 85 than other
/// values. Further, the implementations here give more weight to the high-bits
/// generated by the RNG than the low bits, since with some RNGs the low-bits
/// are of lower quality than the high bits.
///
/// Implementations should attempt to sample in `[low, high)` for
/// `Uniform::new(low, high)`, i.e., excluding `high`, but this may be very
/// difficult. All the primitive integer types satisfy this property, and the
/// float types normally satisfy it, but rounding may mean `high` can occur.
///
/// # Example
///
/// ```
/// use rand::distributions::{Distribution, Uniform};
///
/// fn main() {
///     let between = Uniform::from(10..10000);
///     let mut rng = rand::thread_rng();
///     let mut sum = 0;
///     for _ in 0..1000 {
///         sum += between.sample(&mut rng);
///     }
///     println!("{}", sum);
/// }
/// ```
///
/// [`Uniform::new`]: struct.Uniform.html#method.new
/// [`Uniform::new_inclusive`]: struct.Uniform.html#method.new_inclusive
/// [`new`]: struct.Uniform.html#method.new
/// [`new_inclusive`]: struct.Uniform.html#method.new_inclusive
#[derive(Clone, Copy, Debug)]
pub struct Uniform<X: SampleUniform> {
    inner: X::Sampler,
}

impl<X: SampleUniform> Uniform<X> {
    /// Create a new `Uniform` instance which samples uniformly from the half
    /// open range `[low, high)` (excluding `high`). Panics if `low >= high`.
    pub fn new(low: X, high: X) -> Uniform<X> {
        Uniform { inner: X::Sampler::new(low, high) }
    }

    /// Create a new `Uniform` instance which samples uniformly from the closed
    /// range `[low, high]` (inclusive). Panics if `low > high`.
    pub fn new_inclusive(low: X, high: X) -> Uniform<X> {
        Uniform { inner: X::Sampler::new_inclusive(low, high) }
    }
}

impl<X: SampleUniform> Distribution<X> for Uniform<X> {
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> X {
        self.inner.sample(rng)
    }
}

/// Helper trait for creating objects using the correct implementation of
/// [`UniformSampler`] for the sampling type.
///
/// See the [module documentation] on how to implement [`Uniform`] range
/// sampling for a custom type.
///
/// [`UniformSampler`]: trait.UniformSampler.html
/// [module documentation]: index.html
/// [`Uniform`]: struct.Uniform.html
pub trait SampleUniform: Sized {
    /// The `UniformSampler` implementation supporting type `X`.
    type Sampler: UniformSampler<X = Self>;
}

/// Helper trait handling actual uniform sampling.
///
/// See the [module documentation] on how to implement [`Uniform`] range
/// sampling for a custom type.
///
/// Implementation of [`sample_single`] is optional, and is only useful when
/// the implementation can be faster than `Self::new(low, high).sample(rng)`.
///
/// [module documentation]: index.html
/// [`Uniform`]: struct.Uniform.html
/// [`sample_single`]: trait.UniformSampler.html#method.sample_single
pub trait UniformSampler: Sized {
    /// The type sampled by this implementation.
    type X;

    /// Construct self, with inclusive lower bound and exclusive upper bound
    /// `[low, high)`.
    ///
    /// Usually users should not call this directly but instead use
    /// `Uniform::new`, which asserts that `low < high` before calling this.
    fn new(low: Self::X, high: Self::X) -> Self;

    /// Construct self, with inclusive bounds `[low, high]`.
    ///
    /// Usually users should not call this directly but instead use
    /// `Uniform::new_inclusive`, which asserts that `low <= high` before
    /// calling this.
    fn new_inclusive(low: Self::X, high: Self::X) -> Self;

    /// Sample a value.
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X;

    /// Sample a single value uniformly from a range with inclusive lower bound
    /// and exclusive upper bound `[low, high)`.
    ///
    /// Usually users should not call this directly but instead use
    /// `Uniform::sample_single`, which asserts that `low < high` before calling
    /// this.
    ///
    /// Via this method, implementations can provide a method optimized for
    /// sampling only a single value from the specified range. The default
    /// implementation simply calls `UniformSampler::new` then `sample` on the
    /// result.
    fn sample_single<R: Rng + ?Sized>(low: Self::X, high: Self::X, rng: &mut R)
        -> Self::X
    {
        let uniform: Self = UniformSampler::new(low, high);
        uniform.sample(rng)
    }
}

impl<X: SampleUniform> From<::core::ops::Range<X>> for Uniform<X> {
    fn from(r: ::core::ops::Range<X>) -> Uniform<X> {
        Uniform::new(r.start, r.end)
    }
}

////////////////////////////////////////////////////////////////////////////////

// What follows are all back-ends.


/// The back-end implementing [`UniformSampler`] for integer types.
///
/// Unless you are implementing [`UniformSampler`] for your own type, this type
/// should not be used directly, use [`Uniform`] instead.
///
/// # Implementation notes
///
/// For a closed range, the number of possible numbers we should generate is
/// `range = (high - low + 1)`. It is not possible to end up with a uniform
/// distribution if we map *all* the random integers that can be generated to
/// this range. We have to map integers from a `zone` that is a multiple of the
/// range. The rest of the integers, that cause a bias, are rejected.
///
/// The problem with `range` is that to cover the full range of the type, it has
/// to store `unsigned_max + 1`, which can't be represented. But if the range
/// covers the full range of the type, no modulus is needed. A range of size 0
/// can't exist, so we use that to represent this special case. Wrapping
/// arithmetic even makes representing `unsigned_max + 1` as 0 simple.
///
/// We don't calculate `zone` directly, but first calculate the number of
/// integers to reject. To handle `unsigned_max + 1` not fitting in the type,
/// we use:
/// `ints_to_reject = (unsigned_max + 1) % range;`
/// `ints_to_reject = (unsigned_max - range + 1) % range;`
///
/// The smallest integer PRNGs generate is `u32`. That is why for small integer
/// sizes (`i8`/`u8` and `i16`/`u16`) there is an optimization: don't pick the
/// largest zone that can fit in the small type, but pick the largest zone that
/// can fit in an `u32`. `ints_to_reject` is always less than half the size of
/// the small integer. This means the first bit of `zone` is always 1, and so
/// are all the other preceding bits of a larger integer. The easiest way to
/// grow the `zone` for the larger type is to simply sign extend it.
///
/// An alternative to using a modulus is widening multiply: After a widening
/// multiply by `range`, the result is in the high word. Then comparing the low
/// word against `zone` makes sure our distribution is uniform.
///
/// [`UniformSampler`]: trait.UniformSampler.html
/// [`Uniform`]: struct.Uniform.html
#[derive(Clone, Copy, Debug)]
pub struct UniformInt<X> {
    low: X,
    range: X,
    zone: X,
}

macro_rules! uniform_int_impl {
    ($ty:ty, $signed:ty, $unsigned:ident,
     $i_large:ident, $u_large:ident) => {
        impl SampleUniform for $ty {
            type Sampler = UniformInt<$ty>;
        }

        impl UniformSampler for UniformInt<$ty> {
            // We play free and fast with unsigned vs signed here
            // (when $ty is signed), but that's fine, since the
            // contract of this macro is for $ty and $unsigned to be
            // "bit-equal", so casting between them is a no-op.

            type X = $ty;

            #[inline] // if the range is constant, this helps LLVM to do the
                      // calculations at compile-time.
            fn new(low: Self::X, high: Self::X) -> Self {
                assert!(low < high, "Uniform::new called with `low >= high`");
                UniformSampler::new_inclusive(low, high - 1)
            }

            #[inline] // if the range is constant, this helps LLVM to do the
                      // calculations at compile-time.
            fn new_inclusive(low: Self::X, high: Self::X) -> Self {
                assert!(low <= high,
                        "Uniform::new_inclusive called with `low > high`");
                let unsigned_max = ::core::$unsigned::MAX;

                let range = high.wrapping_sub(low).wrapping_add(1) as $unsigned;
                let ints_to_reject =
                    if range > 0 {
                        (unsigned_max - range + 1) % range
                    } else {
                        0
                    };
                let zone = unsigned_max - ints_to_reject;

                UniformInt {
                    low: low,
                    // These are really $unsigned values, but store as $ty:
                    range: range as $ty,
                    zone: zone as $ty
                }
            }

            fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
                let range = self.range as $unsigned as $u_large;
                if range > 0 {
                    // Grow `zone` to fit a type of at least 32 bits, by
                    // sign-extending it (the first bit is always 1, so are all
                    // the preceding bits of the larger type).
                    // For types that already have the right size, all the
                    // casting is a no-op.
                    let zone = self.zone as $signed as $i_large as $u_large;
                    loop {
                        let v: $u_large = rng.gen();
                        let (hi, lo) = v.wmul(range);
                        if lo <= zone {
                            return self.low.wrapping_add(hi as $ty);
                        }
                    }
                } else {
                    // Sample from the entire integer range.
                    rng.gen()
                }
            }

            fn sample_single<R: Rng + ?Sized>(low: Self::X,
                                              high: Self::X,
                                              rng: &mut R) -> Self::X
            {
                assert!(low < high,
                        "Uniform::sample_single called with low >= high");
                let range = high.wrapping_sub(low) as $unsigned as $u_large;
                let zone =
                    if ::core::$unsigned::MAX <= ::core::u16::MAX as $unsigned {
                        // Using a modulus is faster than the approximation for
                        // i8 and i16. I suppose we trade the cost of one
                        // modulus for near-perfect branch prediction.
                        let unsigned_max: $u_large = ::core::$u_large::MAX;
                        let ints_to_reject = (unsigned_max - range + 1) % range;
                        unsigned_max - ints_to_reject
                    } else {
                        // conservative but fast approximation
                       range << range.leading_zeros()
                    };

                loop {
                    let v: $u_large = rng.gen();
                    let (hi, lo) = v.wmul(range);
                    if lo <= zone {
                        return low.wrapping_add(hi as $ty);
                    }
                }
            }
        }
    }
}

uniform_int_impl! { i8, i8, u8, i32, u32 }
uniform_int_impl! { i16, i16, u16, i32, u32 }
uniform_int_impl! { i32, i32, u32, i32, u32 }
uniform_int_impl! { i64, i64, u64, i64, u64 }
#[cfg(feature = "i128_support")]
uniform_int_impl! { i128, i128, u128, u128, u128 }
uniform_int_impl! { isize, isize, usize, isize, usize }
uniform_int_impl! { u8, i8, u8, i32, u32 }
uniform_int_impl! { u16, i16, u16, i32, u32 }
uniform_int_impl! { u32, i32, u32, i32, u32 }
uniform_int_impl! { u64, i64, u64, i64, u64 }
uniform_int_impl! { usize, isize, usize, isize, usize }
#[cfg(feature = "i128_support")]
uniform_int_impl! { u128, u128, u128, i128, u128 }


trait WideningMultiply<RHS = Self> {
    type Output;

    fn wmul(self, x: RHS) -> Self::Output;
}

macro_rules! wmul_impl {
    ($ty:ty, $wide:ty, $shift:expr) => {
        impl WideningMultiply for $ty {
            type Output = ($ty, $ty);

            #[inline(always)]
            fn wmul(self, x: $ty) -> Self::Output {
                let tmp = (self as $wide) * (x as $wide);
                ((tmp >> $shift) as $ty, tmp as $ty)
            }
        }
    }
}
wmul_impl! { u8, u16, 8 }
wmul_impl! { u16, u32, 16 }
wmul_impl! { u32, u64, 32 }
#[cfg(feature = "i128_support")]
wmul_impl! { u64, u128, 64 }

// This code is a translation of the __mulddi3 function in LLVM's
// compiler-rt. It is an optimised variant of the common method
// `(a + b) * (c + d) = ac + ad + bc + bd`.
//
// For some reason LLVM can optimise the C version very well, but
// keeps shuffeling registers in this Rust translation.
macro_rules! wmul_impl_large {
    ($ty:ty, $half:expr) => {
        impl WideningMultiply for $ty {
            type Output = ($ty, $ty);

            #[inline(always)]
            fn wmul(self, b: $ty) -> Self::Output {
                const LOWER_MASK: $ty = !0 >> $half;
                let mut low = (self & LOWER_MASK).wrapping_mul(b & LOWER_MASK);
                let mut t = low >> $half;
                low &= LOWER_MASK;
                t += (self >> $half).wrapping_mul(b & LOWER_MASK);
                low += (t & LOWER_MASK) << $half;
                let mut high = t >> $half;
                t = low >> $half;
                low &= LOWER_MASK;
                t += (b >> $half).wrapping_mul(self & LOWER_MASK);
                low += (t & LOWER_MASK) << $half;
                high += t >> $half;
                high += (self >> $half).wrapping_mul(b >> $half);

                (high, low)
            }
        }
    }
}
#[cfg(not(feature = "i128_support"))]
wmul_impl_large! { u64, 32 }
#[cfg(feature = "i128_support")]
wmul_impl_large! { u128, 64 }

macro_rules! wmul_impl_usize {
    ($ty:ty) => {
        impl WideningMultiply for usize {
            type Output = (usize, usize);

            #[inline(always)]
            fn wmul(self, x: usize) -> Self::Output {
                let (high, low) = (self as $ty).wmul(x as $ty);
                (high as usize, low as usize)
            }
        }
    }
}
#[cfg(target_pointer_width = "32")]
wmul_impl_usize! { u32 }
#[cfg(target_pointer_width = "64")]
wmul_impl_usize! { u64 }



/// The back-end implementing [`UniformSampler`] for floating-point types.
///
/// Unless you are implementing [`UniformSampler`] for your own type, this type
/// should not be used directly, use [`Uniform`] instead.
///
/// # Implementation notes
///
/// Instead of generating a float in the `[0, 1)` range using [`Standard`], the
/// `UniformFloat` implementation converts the output of an PRNG itself. This
/// way one or two steps can be optimized out.
///
/// The floats are first converted to a value in the `[1, 2)` interval using a
/// transmute-based method, and then mapped to the expected range with a
/// multiply and addition. Values produced this way have what equals 22 bits of
/// random digits for an `f32`, and 52 for an `f64`.
///
/// Currently there is no difference between [`new`] and [`new_inclusive`],
/// because the boundaries of a floats range are a bit of a fuzzy concept due to
/// rounding errors.
///
/// [`UniformSampler`]: trait.UniformSampler.html
/// [`new`]: trait.UniformSampler.html#tymethod.new
/// [`new_inclusive`]: trait.UniformSampler.html#tymethod.new_inclusive
/// [`Uniform`]: struct.Uniform.html
/// [`Standard`]: ../struct.Standard.html
#[derive(Clone, Copy, Debug)]
pub struct UniformFloat<X> {
    scale: X,
    offset: X,
}

macro_rules! uniform_float_impl {
    ($ty:ty, $bits_to_discard:expr, $next_u:ident) => {
        impl SampleUniform for $ty {
            type Sampler = UniformFloat<$ty>;
        }

        impl UniformSampler for UniformFloat<$ty> {
            type X = $ty;

            fn new(low: Self::X, high: Self::X) -> Self {
                assert!(low < high, "Uniform::new called with `low >= high`");
                let scale = high - low;
                let offset = low - scale;
                UniformFloat {
                    scale: scale,
                    offset: offset,
                }
            }

            fn new_inclusive(low: Self::X, high: Self::X) -> Self {
                assert!(low <= high,
                        "Uniform::new_inclusive called with `low > high`");
                let scale = high - low;
                let offset = low - scale;
                UniformFloat {
                    scale: scale,
                    offset: offset,
                }
            }

            fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
                // Generate a value in the range [1, 2)
                let value1_2 = (rng.$next_u() >> $bits_to_discard)
                               .into_float_with_exponent(0);
                // We don't use `f64::mul_add`, because it is not available with
                // `no_std`. Furthermore, it is slower for some targets (but
                // faster for others). However, the order of multiplication and
                // addition is important, because on some platforms (e.g. ARM)
                // it will be optimized to a single (non-FMA) instruction.
                value1_2 * self.scale + self.offset
            }

            fn sample_single<R: Rng + ?Sized>(low: Self::X,
                                              high: Self::X,
                                              rng: &mut R) -> Self::X {
                assert!(low < high,
                        "Uniform::sample_single called with low >= high");
                let scale = high - low;
                let offset = low - scale;
                // Generate a value in the range [1, 2)
                let value1_2 = (rng.$next_u() >> $bits_to_discard)
                               .into_float_with_exponent(0);
                // Doing multiply before addition allows some architectures to
                // use a single instruction.
                value1_2 * scale + offset
            }
        }
    }
}

uniform_float_impl! { f32, 32 - 23, next_u32 }
uniform_float_impl! { f64, 64 - 52, next_u64 }



/// The back-end implementing [`UniformSampler`] for `Duration`.
///
/// Unless you are implementing [`UniformSampler`] for your own types, this type
/// should not be used directly, use [`Uniform`] instead.
///
/// [`UniformSampler`]: trait.UniformSampler.html
/// [`Uniform`]: struct.Uniform.html
#[cfg(feature = "std")]
#[derive(Clone, Copy, Debug)]
pub struct UniformDuration {
    offset: Duration,
    mode: UniformDurationMode,
}

#[cfg(feature = "std")]
#[derive(Debug, Copy, Clone)]
enum UniformDurationMode {
    Small {
        nanos: Uniform<u64>,
    },
    Large {
        size: Duration,
        secs: Uniform<u64>,
    }
}

#[cfg(feature = "std")]
impl SampleUniform for Duration {
    type Sampler = UniformDuration;
}

#[cfg(feature = "std")]
impl UniformSampler for UniformDuration {
    type X = Duration;

    #[inline]
    fn new(low: Duration, high: Duration) -> UniformDuration {
        assert!(low < high, "Uniform::new called with `low >= high`");
        UniformDuration::new_inclusive(low, high - Duration::new(0, 1))
    }

    #[inline]
    fn new_inclusive(low: Duration, high: Duration) -> UniformDuration {
        assert!(low <= high, "Uniform::new_inclusive called with `low > high`");
        let size = high - low;
        let nanos = size
            .as_secs()
            .checked_mul(1_000_000_000)
            .and_then(|n| n.checked_add(size.subsec_nanos() as u64));

        let mode = match nanos {
            Some(nanos) => {
                UniformDurationMode::Small {
                    nanos: Uniform::new_inclusive(0, nanos),
                }
            }
            None => {
                UniformDurationMode::Large {
                    size: size,
                    secs: Uniform::new_inclusive(0, size.as_secs()),
                }
            }
        };

        UniformDuration {
            mode,
            offset: low,
        }
    }

    #[inline]
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Duration {
        let d = match self.mode {
            UniformDurationMode::Small { nanos } => {
                let nanos = nanos.sample(rng);
                Duration::new(nanos / 1_000_000_000, (nanos % 1_000_000_000) as u32)
            }
            UniformDurationMode::Large { size, secs } => {
                // constant folding means this is at least as fast as `gen_range`
                let nano_range = Uniform::new(0, 1_000_000_000);
                loop {
                    let d = Duration::new(secs.sample(rng), nano_range.sample(rng));
                    if d <= size {
                        break d;
                    }
                }
            }
        };

        self.offset + d
    }
}

#[cfg(test)]
mod tests {
    use Rng;
    use distributions::uniform::{Uniform, UniformSampler, UniformFloat, SampleUniform};

    #[should_panic]
    #[test]
    fn test_uniform_bad_limits_equal_int() {
        Uniform::new(10, 10);
    }

    #[should_panic]
    #[test]
    fn test_uniform_bad_limits_equal_float() {
        Uniform::new(10., 10.);
    }

    #[test]
    fn test_uniform_good_limits_equal_int() {
        let mut rng = ::test::rng(804);
        let dist = Uniform::new_inclusive(10, 10);
        for _ in 0..20 {
            assert_eq!(rng.sample(dist), 10);
        }
    }

    #[test]
    fn test_uniform_good_limits_equal_float() {
        let mut rng = ::test::rng(805);
        let dist = Uniform::new_inclusive(10., 10.);
        for _ in 0..20 {
            assert_eq!(rng.sample(dist), 10.);
        }
    }

    #[should_panic]
    #[test]
    fn test_uniform_bad_limits_flipped_int() {
        Uniform::new(10, 5);
    }

    #[should_panic]
    #[test]
    fn test_uniform_bad_limits_flipped_float() {
        Uniform::new(10., 5.);
    }

    #[test]
    fn test_integers() {
        let mut rng = ::test::rng(251);
        macro_rules! t {
            ($($ty:ident),*) => {{
                $(
                   let v: &[($ty, $ty)] = &[(0, 10),
                                            (10, 127),
                                            (::core::$ty::MIN, ::core::$ty::MAX)];
                   for &(low, high) in v.iter() {
                        let my_uniform = Uniform::new(low, high);
                        for _ in 0..1000 {
                            let v: $ty = rng.sample(my_uniform);
                            assert!(low <= v && v < high);
                        }

                        let my_uniform = Uniform::new_inclusive(low, high);
                        for _ in 0..1000 {
                            let v: $ty = rng.sample(my_uniform);
                            assert!(low <= v && v <= high);
                        }

                        for _ in 0..1000 {
                            let v: $ty = rng.gen_range(low, high);
                            assert!(low <= v && v < high);
                        }
                    }
                 )*
            }}
        }
        t!(i8, i16, i32, i64, isize,
           u8, u16, u32, u64, usize);
        #[cfg(feature = "i128_support")]
        t!(i128, u128)
    }

    #[test]
    fn test_floats() {
        let mut rng = ::test::rng(252);
        macro_rules! t {
            ($($ty:ty),*) => {{
                $(
                   let v: &[($ty, $ty)] = &[(0.0, 100.0),
                                            (-1e35, -1e25),
                                            (1e-35, 1e-25),
                                            (-1e35, 1e35)];
                   for &(low, high) in v.iter() {
                        let my_uniform = Uniform::new(low, high);
                        for _ in 0..1000 {
                            let v: $ty = rng.sample(my_uniform);
                            assert!(low <= v && v < high);
                        }
                    }
                 )*
            }}
        }

        t!(f32, f64)
    }

    #[test]
    #[cfg(feature = "std")]
    fn test_durations() {
        use std::time::Duration;

        let mut rng = ::test::rng(253);

        let v = &[(Duration::new(10, 50000), Duration::new(100, 1234)),
                  (Duration::new(0, 100), Duration::new(1, 50)),
                  (Duration::new(0, 0), Duration::new(u64::max_value(), 999_999_999))];
        for &(low, high) in v.iter() {
            let my_uniform = Uniform::new(low, high);
            for _ in 0..1000 {
                let v = rng.sample(my_uniform);
                assert!(low <= v && v < high);
            }
        }
    }

    #[test]
    fn test_custom_uniform() {
        #[derive(Clone, Copy, PartialEq, PartialOrd)]
        struct MyF32 {
            x: f32,
        }
        #[derive(Clone, Copy, Debug)]
        struct UniformMyF32 {
            inner: UniformFloat<f32>,
        }
        impl UniformSampler for UniformMyF32 {
            type X = MyF32;
            fn new(low: Self::X, high: Self::X) -> Self {
                UniformMyF32 {
                    inner: UniformFloat::<f32>::new(low.x, high.x),
                }
            }
            fn new_inclusive(low: Self::X, high: Self::X) -> Self {
                UniformSampler::new(low, high)
            }
            fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
                MyF32 { x: self.inner.sample(rng) }
            }
        }
        impl SampleUniform for MyF32 {
            type Sampler = UniformMyF32;
        }

        let (low, high) = (MyF32{ x: 17.0f32 }, MyF32{ x: 22.0f32 });
        let uniform = Uniform::new(low, high);
        let mut rng = ::test::rng(804);
        for _ in 0..100 {
            let x: MyF32 = rng.sample(uniform);
            assert!(low <= x && x < high);
        }
    }

    #[test]
    fn test_uniform_from_std_range() {
        let r = Uniform::from(2u32..7);
        assert_eq!(r.inner.low, 2);
        assert_eq!(r.inner.range, 5);
        let r = Uniform::from(2.0f64..7.0);
        assert_eq!(r.inner.offset, -3.0);
        assert_eq!(r.inner.scale, 5.0);
    }
}