1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
// Copyright 2017 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// https://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Xorshift generators

use core::num::Wrapping as w;
use core::{fmt, slice};
use rand_core::{RngCore, SeedableRng, Error, impls, le};

/// An Xorshift random number generator.
///
/// The Xorshift[^1] algorithm is not suitable for cryptographic purposes
/// but is very fast. If you do not know for sure that it fits your
/// requirements, use a more secure one such as `IsaacRng` or `OsRng`.
///
/// [^1]: Marsaglia, George (July 2003).
///       ["Xorshift RNGs"](https://www.jstatsoft.org/v08/i14/paper).
///       *Journal of Statistical Software*. Vol. 8 (Issue 14).
#[derive(Clone)]
#[cfg_attr(feature="serde1", derive(Serialize,Deserialize))]
pub struct XorShiftRng {
    x: w<u32>,
    y: w<u32>,
    z: w<u32>,
    w: w<u32>,
}

// Custom Debug implementation that does not expose the internal state
impl fmt::Debug for XorShiftRng {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "XorShiftRng {{}}")
    }
}

impl XorShiftRng {
    /// Creates a new XorShiftRng instance which is not seeded.
    ///
    /// The initial values of this RNG are constants, so all generators created
    /// by this function will yield the same stream of random numbers. It is
    /// highly recommended that this is created through `SeedableRng` instead of
    /// this function
    #[deprecated(since="0.5.0", note="use the FromEntropy or SeedableRng trait")]
    pub fn new_unseeded() -> XorShiftRng {
        XorShiftRng {
            x: w(0x193a6754),
            y: w(0xa8a7d469),
            z: w(0x97830e05),
            w: w(0x113ba7bb),
        }
    }
}

impl RngCore for XorShiftRng {
    #[inline]
    fn next_u32(&mut self) -> u32 {
        let x = self.x;
        let t = x ^ (x << 11);
        self.x = self.y;
        self.y = self.z;
        self.z = self.w;
        let w_ = self.w;
        self.w = w_ ^ (w_ >> 19) ^ (t ^ (t >> 8));
        self.w.0
    }

    #[inline]
    fn next_u64(&mut self) -> u64 {
        impls::next_u64_via_u32(self)
    }

    #[inline]
    fn fill_bytes(&mut self, dest: &mut [u8]) {
        impls::fill_bytes_via_next(self, dest)
    }

    fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
        Ok(self.fill_bytes(dest))
    }
}

impl SeedableRng for XorShiftRng {
    type Seed = [u8; 16];

    fn from_seed(seed: Self::Seed) -> Self {
        let mut seed_u32 = [0u32; 4];
        le::read_u32_into(&seed, &mut seed_u32);

        // Xorshift cannot be seeded with 0 and we cannot return an Error, but
        // also do not wish to panic (because a random seed can legitimately be
        // 0); our only option is therefore to use a preset value.
        if seed_u32.iter().all(|&x| x == 0) {
            seed_u32 = [0xBAD_5EED, 0xBAD_5EED, 0xBAD_5EED, 0xBAD_5EED];
        }

        XorShiftRng {
            x: w(seed_u32[0]),
            y: w(seed_u32[1]),
            z: w(seed_u32[2]),
            w: w(seed_u32[3]),
        }
    }

    fn from_rng<R: RngCore>(mut rng: R) -> Result<Self, Error> {
        let mut seed_u32 = [0u32; 4];
        loop {
            unsafe {
                let ptr = seed_u32.as_mut_ptr() as *mut u8;

                let slice = slice::from_raw_parts_mut(ptr, 4 * 4);
                rng.try_fill_bytes(slice)?;
            }
            if !seed_u32.iter().all(|&x| x == 0) { break; }
        }

        Ok(XorShiftRng {
            x: w(seed_u32[0]),
            y: w(seed_u32[1]),
            z: w(seed_u32[2]),
            w: w(seed_u32[3]),
        })
    }
}

#[cfg(test)]
mod tests {
    use {RngCore, SeedableRng};
    use super::XorShiftRng;

    #[test]
    fn test_xorshift_construction() {
        // Test that various construction techniques produce a working RNG.
        let seed = [1,2,3,4, 5,6,7,8, 9,10,11,12, 13,14,15,16];
        let mut rng1 = XorShiftRng::from_seed(seed);
        assert_eq!(rng1.next_u64(), 4325440999699518727);

        let _rng2 = XorShiftRng::from_rng(rng1).unwrap();
        // Note: we cannot test the state of _rng2 because from_rng does not
        // fix Endianness. This is allowed in the trait specification.
    }

    #[test]
    fn test_xorshift_true_values() {
        let seed = [16,15,14,13, 12,11,10,9, 8,7,6,5, 4,3,2,1];
        let mut rng = XorShiftRng::from_seed(seed);

        let mut results = [0u32; 9];
        for i in results.iter_mut() { *i = rng.next_u32(); }
        let expected: [u32; 9] = [
            2081028795, 620940381, 269070770, 16943764, 854422573, 29242889,
            1550291885, 1227154591, 271695242];
        assert_eq!(results, expected);

        let mut results = [0u64; 9];
        for i in results.iter_mut() { *i = rng.next_u64(); }
        let expected: [u64; 9] = [
            9247529084182843387, 8321512596129439293, 14104136531997710878,
            6848554330849612046, 343577296533772213, 17828467390962600268,
            9847333257685787782, 7717352744383350108, 1133407547287910111];
        assert_eq!(results, expected);

        let mut results = [0u8; 32];
        rng.fill_bytes(&mut results);
        let expected = [102, 57, 212, 16, 233, 130, 49, 183,
                        158, 187, 44, 203, 63, 149, 45, 17,
                        117, 129, 131, 160, 70, 121, 158, 155,
                        224, 209, 192, 53, 10, 62, 57, 72];
        assert_eq!(results, expected);
    }

    #[test]
    fn test_xorshift_zero_seed() {
        // Xorshift does not work with an all zero seed.
        // Assert it does not panic.
        let seed = [0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0];
        let mut rng = XorShiftRng::from_seed(seed);
        let a = rng.next_u64();
        let b = rng.next_u64();
        assert!(a != 0);
        assert!(b != a);
    }

    #[test]
    fn test_xorshift_clone() {
        let seed = [1,2,3,4, 5,5,7,8, 8,7,6,5, 4,3,2,1];
        let mut rng1 = XorShiftRng::from_seed(seed);
        let mut rng2 = rng1.clone();
        for _ in 0..16 {
            assert_eq!(rng1.next_u64(), rng2.next_u64());
        }
    }

    #[cfg(all(feature="serde1", feature="std"))]
    #[test]
    fn test_xorshift_serde() {
        use bincode;
        use std::io::{BufWriter, BufReader};

        let seed = [1,2,3,4, 5,6,7,8, 9,10,11,12, 13,14,15,16];
        let mut rng = XorShiftRng::from_seed(seed);

        let buf: Vec<u8> = Vec::new();
        let mut buf = BufWriter::new(buf);
        bincode::serialize_into(&mut buf, &rng).expect("Could not serialize");

        let buf = buf.into_inner().unwrap();
        let mut read = BufReader::new(&buf[..]);
        let mut deserialized: XorShiftRng = bincode::deserialize_from(&mut read).expect("Could not deserialize");

        assert_eq!(rng.x, deserialized.x);
        assert_eq!(rng.y, deserialized.y);
        assert_eq!(rng.z, deserialized.z);
        assert_eq!(rng.w, deserialized.w);

        for _ in 0..16 {
            assert_eq!(rng.next_u64(), deserialized.next_u64());
        }
    }
}