1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
// Copyright 2017-2018 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // https://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or // https://www.apache.org/licenses/LICENSE-2.0> or the MIT license // <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Thread-local random number generator use std::cell::UnsafeCell; use std::rc::Rc; use {RngCore, CryptoRng, SeedableRng, Error}; use rngs::adapter::ReseedingRng; use rngs::EntropyRng; use prng::hc128::Hc128Core; // Rationale for using `UnsafeCell` in `ThreadRng`: // // Previously we used a `RefCell`, with an overhead of ~15%. There will only // ever be one mutable reference to the interior of the `UnsafeCell`, because // we only have such a reference inside `next_u32`, `next_u64`, etc. Within a // single thread (which is the definition of `ThreadRng`), there will only ever // be one of these methods active at a time. // // A possible scenario where there could be multiple mutable references is if // `ThreadRng` is used inside `next_u32` and co. But the implementation is // completely under our control. We just have to ensure none of them use // `ThreadRng` internally, which is nonsensical anyway. We should also never run // `ThreadRng` in destructors of its implementation, which is also nonsensical. // // The additional `Rc` is not strictly neccesary, and could be removed. For now // it ensures `ThreadRng` stays `!Send` and `!Sync`, and implements `Clone`. // Number of generated bytes after which to reseed `TreadRng`. // // The time it takes to reseed HC-128 is roughly equivalent to generating 7 KiB. // We pick a treshold here that is large enough to not reduce the average // performance too much, but also small enough to not make reseeding something // that basically never happens. const THREAD_RNG_RESEED_THRESHOLD: u64 = 32*1024*1024; // 32 MiB /// The type returned by [`thread_rng`], essentially just a reference to the /// PRNG in thread-local memory. /// /// `ThreadRng` uses [`ReseedingRng`] wrapping the same PRNG as [`StdRng`], /// which is reseeded after generating 32 MiB of random data. A single instance /// is cached per thread and the returned `ThreadRng` is a reference to this /// instance — hence `ThreadRng` is neither `Send` nor `Sync` but is safe to use /// within a single thread. This RNG is seeded and reseeded via [`EntropyRng`] /// as required. /// /// Note that the reseeding is done as an extra precaution against entropy /// leaks and is in theory unnecessary — to predict `ThreadRng`'s output, an /// attacker would have to either determine most of the RNG's seed or internal /// state, or crack the algorithm used. /// /// Like [`StdRng`], `ThreadRng` is a cryptographically secure PRNG. The current /// algorithm used is [HC-128], which is an array-based PRNG that trades memory /// usage for better performance. This makes it similar to ISAAC, the algorithm /// used in `ThreadRng` before rand 0.5. /// /// Cloning this handle just produces a new reference to the same thread-local /// generator. /// /// [`thread_rng`]: ../fn.thread_rng.html /// [`ReseedingRng`]: adapter/struct.ReseedingRng.html /// [`StdRng`]: struct.StdRng.html /// [`EntropyRng`]: struct.EntropyRng.html /// [HC-128]: ../prng/hc128/struct.Hc128Rng.html #[derive(Clone, Debug)] pub struct ThreadRng { rng: Rc<UnsafeCell<ReseedingRng<Hc128Core, EntropyRng>>>, } thread_local!( static THREAD_RNG_KEY: Rc<UnsafeCell<ReseedingRng<Hc128Core, EntropyRng>>> = { let mut entropy_source = EntropyRng::new(); let r = Hc128Core::from_rng(&mut entropy_source).unwrap_or_else(|err| panic!("could not initialize thread_rng: {}", err)); let rng = ReseedingRng::new(r, THREAD_RNG_RESEED_THRESHOLD, entropy_source); Rc::new(UnsafeCell::new(rng)) } ); /// Retrieve the lazily-initialized thread-local random number /// generator, seeded by the system. Intended to be used in method /// chaining style, e.g. `thread_rng().gen::<i32>()`, or cached locally, e.g. /// `let mut rng = thread_rng();`. /// /// For more information see [`ThreadRng`]. /// /// [`ThreadRng`]: rngs/struct.ThreadRng.html pub fn thread_rng() -> ThreadRng { ThreadRng { rng: THREAD_RNG_KEY.with(|t| t.clone()) } } impl RngCore for ThreadRng { #[inline(always)] fn next_u32(&mut self) -> u32 { unsafe { (*self.rng.get()).next_u32() } } #[inline(always)] fn next_u64(&mut self) -> u64 { unsafe { (*self.rng.get()).next_u64() } } fn fill_bytes(&mut self, dest: &mut [u8]) { unsafe { (*self.rng.get()).fill_bytes(dest) } } fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { unsafe { (*self.rng.get()).try_fill_bytes(dest) } } } impl CryptoRng for ThreadRng {} #[cfg(test)] mod test { #[test] #[cfg(not(feature="stdweb"))] fn test_thread_rng() { use Rng; let mut r = ::thread_rng(); r.gen::<i32>(); let mut v = [1, 1, 1]; r.shuffle(&mut v); let b: &[_] = &[1, 1, 1]; assert_eq!(v, b); assert_eq!(r.gen_range(0, 1), 0); } }