1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
use tokio_executor::park::{Park, Unpark};

use std::error::Error;
use std::fmt;
use std::sync::{Arc, Mutex, Condvar};
use std::sync::atomic::AtomicUsize;
use std::sync::atomic::Ordering::SeqCst;
use std::time::Duration;

/// Parks the thread.
#[derive(Debug)]
pub struct DefaultPark {
    inner: Arc<Inner>,
}

/// Unparks threads that were parked by `DefaultPark`.
#[derive(Debug)]
pub struct DefaultUnpark {
    inner: Arc<Inner>,
}

/// Error returned by [`ParkThread`]
///
/// This currently is never returned, but might at some point in the future.
///
/// [`ParkThread`]: struct.ParkThread.html
#[derive(Debug)]
pub struct ParkError {
    _p: (),
}

#[derive(Debug)]
struct Inner {
    state: AtomicUsize,
    mutex: Mutex<()>,
    condvar: Condvar,
}

const IDLE: usize = 0;
const NOTIFY: usize = 1;
const SLEEP: usize = 2;

// ===== impl DefaultPark =====

impl DefaultPark {
    /// Creates a new `DefaultPark` instance.
    pub fn new() -> DefaultPark {
        let inner = Arc::new(Inner {
            state: AtomicUsize::new(IDLE),
            mutex: Mutex::new(()),
            condvar: Condvar::new(),
        });

        DefaultPark { inner }
    }

    /// Unpark the thread without having to clone the unpark handle.
    ///
    /// Named `notify` to avoid conflicting with the `unpark` fn.
    pub(crate) fn notify(&self) {
        self.inner.unpark();
    }

    pub(crate) fn park_sync(&self, duration: Option<Duration>) {
        self.inner.park(duration);
    }
}

impl Park for DefaultPark {
    type Unpark = DefaultUnpark;
    type Error = ParkError;

    fn unpark(&self) -> Self::Unpark {
        let inner = self.inner.clone();
        DefaultUnpark { inner }
    }

    fn park(&mut self) -> Result<(), Self::Error> {
        self.inner.park(None);
        Ok(())
    }

    fn park_timeout(&mut self, duration: Duration) -> Result<(), Self::Error> {
        self.inner.park(Some(duration));
        Ok(())
    }
}

// ===== impl DefaultUnpark =====

impl Unpark for DefaultUnpark {
    fn unpark(&self) {
        self.inner.unpark();
    }
}

impl Inner {
    /// Park the current thread for at most `dur`.
    fn park(&self, timeout: Option<Duration>) {
        // If currently notified, then we skip sleeping. This is checked outside
        // of the lock to avoid acquiring a mutex if not necessary.
        match self.state.compare_and_swap(NOTIFY, IDLE, SeqCst) {
            NOTIFY => return,
            IDLE => {},
            _ => unreachable!(),
        }

        // If the duration is zero, then there is no need to actually block
        if let Some(ref dur) = timeout {
            if *dur == Duration::from_millis(0) {
                return;
            }
        }

        // The state is currently idle, so obtain the lock and then try to
        // transition to a sleeping state.
        let mut m = self.mutex.lock().unwrap();

        // Transition to sleeping
        match self.state.compare_and_swap(IDLE, SLEEP, SeqCst) {
            NOTIFY => {
                // Notified before we could sleep, consume the notification and
                // exit
                self.state.store(IDLE, SeqCst);
                return;
            }
            IDLE => {},
            _ => unreachable!(),
        }

        m = match timeout {
            Some(timeout) => self.condvar.wait_timeout(m, timeout).unwrap().0,
            None => self.condvar.wait(m).unwrap(),
        };

        // Transition back to idle. If the state has transitioned to `NOTIFY`,
        // this will consume that notification.
        self.state.store(IDLE, SeqCst);

        // Explicitly drop the mutex guard. There is no real point in doing it
        // except that I find it helpful to make it explicit where we want the
        // mutex to unlock.
        drop(m);
    }

    fn unpark(&self) {
        // First, try transitioning from IDLE -> NOTIFY, this does not require a
        // lock.
        match self.state.compare_and_swap(IDLE, NOTIFY, SeqCst) {
            IDLE | NOTIFY => return,
            SLEEP => {}
            _ => unreachable!(),
        }

        // The other half is sleeping, this requires a lock
        let _m = self.mutex.lock().unwrap();

        // Transition to NOTIFY
        match self.state.swap(NOTIFY, SeqCst) {
            SLEEP => {}
            NOTIFY => return,
            IDLE => return,
            _ => unreachable!(),
        }

        // Wakeup the sleeper
        self.condvar.notify_one();
    }
}

// ===== impl ParkError =====

impl fmt::Display for ParkError {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        self.description().fmt(fmt)
    }
}

impl Error for ParkError {
    fn description(&self) -> &str {
        "unknown park error"
    }
}