1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
use builder::Builder; use pool::Pool; use sender::Sender; use shutdown::Shutdown; use futures::{Future, Poll}; use futures::sync::oneshot; /// Work-stealing based thread pool for executing futures. /// /// If a `ThreadPool` instance is dropped without explicitly being shutdown, /// `shutdown_now` is called implicitly, forcing all tasks that have not yet /// completed to be dropped. /// /// Create `ThreadPool` instances using `Builder`. #[derive(Debug)] pub struct ThreadPool { pub(crate) inner: Option<Sender>, } impl ThreadPool { /// Create a new `ThreadPool` with default values. /// /// Use [`Builder`] for creating a configured thread pool. /// /// [`Builder`]: struct.Builder.html pub fn new() -> ThreadPool { Builder::new().build() } /// Spawn a future onto the thread pool. /// /// This function takes ownership of the future and randomly assigns it to a /// worker thread. The thread will then start executing the future. /// /// # Examples /// /// ```rust /// # extern crate tokio_threadpool; /// # extern crate futures; /// # use tokio_threadpool::ThreadPool; /// use futures::future::{Future, lazy}; /// /// # pub fn main() { /// // Create a thread pool with default configuration values /// let thread_pool = ThreadPool::new(); /// /// thread_pool.spawn(lazy(|| { /// println!("called from a worker thread"); /// Ok(()) /// })); /// /// // Gracefully shutdown the threadpool /// thread_pool.shutdown().wait().unwrap(); /// # } /// ``` /// /// # Panics /// /// This function panics if the spawn fails. Use [`Sender::spawn`] for a /// version that returns a `Result` instead of panicking. pub fn spawn<F>(&self, future: F) where F: Future<Item = (), Error = ()> + Send + 'static, { self.sender().spawn(future).unwrap(); } /// Spawn a future on to the thread pool, return a future representing /// the produced value. /// /// The SpawnHandle returned is a future that is a proxy for future itself. /// When future completes on this thread pool then the SpawnHandle will itself /// be resolved. /// /// # Examples /// /// ```rust /// # extern crate tokio_threadpool; /// # extern crate futures; /// # use tokio_threadpool::ThreadPool; /// use futures::future::{Future, lazy}; /// /// # pub fn main() { /// // Create a thread pool with default configuration values /// let thread_pool = ThreadPool::new(); /// /// let handle = thread_pool.spawn_handle(lazy(|| Ok::<_, ()>(42))); /// /// let value = handle.wait().unwrap(); /// assert_eq!(value, 42); /// /// // Gracefully shutdown the threadpool /// thread_pool.shutdown().wait().unwrap(); /// # } /// ``` /// /// # Panics /// /// This function panics if the spawn fails. pub fn spawn_handle<F>(&self, future: F) -> SpawnHandle<F::Item, F::Error> where F: Future + Send + 'static, F::Item: Send + 'static, F::Error: Send + 'static, { SpawnHandle(oneshot::spawn(future, self.sender())) } /// Return a reference to the sender handle /// /// The handle is used to spawn futures onto the thread pool. It also /// implements the `Executor` trait. pub fn sender(&self) -> &Sender { self.inner.as_ref().unwrap() } /// Return a mutable reference to the sender handle pub fn sender_mut(&mut self) -> &mut Sender { self.inner.as_mut().unwrap() } /// Shutdown the pool once it becomes idle. /// /// Idle is defined as the completion of all futures that have been spawned /// onto the thread pool. There may still be outstanding handles when the /// thread pool reaches an idle state. /// /// Once the idle state is reached, calling `spawn` on any outstanding /// handle will result in an error. All worker threads are signaled and will /// shutdown. The returned future completes once all worker threads have /// completed the shutdown process. pub fn shutdown_on_idle(mut self) -> Shutdown { self.inner().shutdown(false, false); Shutdown { inner: self.inner.take().unwrap() } } /// Shutdown the pool /// /// This prevents the thread pool from accepting new tasks but will allow /// any existing tasks to complete. /// /// Calling `spawn` on any outstanding handle will result in an error. All /// worker threads are signaled and will shutdown. The returned future /// completes once all worker threads have completed the shutdown process. pub fn shutdown(mut self) -> Shutdown { self.inner().shutdown(true, false); Shutdown { inner: self.inner.take().unwrap() } } /// Shutdown the pool immediately /// /// This will prevent the thread pool from accepting new tasks **and** /// abort any tasks that are currently running on the thread pool. /// /// Calling `spawn` on any outstanding handle will result in an error. All /// worker threads are signaled and will shutdown. The returned future /// completes once all worker threads have completed the shutdown process. pub fn shutdown_now(mut self) -> Shutdown { self.inner().shutdown(true, true); Shutdown { inner: self.inner.take().unwrap() } } fn inner(&self) -> &Pool { &*self.inner.as_ref().unwrap().inner } } impl Drop for ThreadPool { fn drop(&mut self) { if let Some(sender) = self.inner.take() { sender.inner.shutdown(true, true); let shutdown = Shutdown { inner: sender }; let _ = shutdown.wait(); } } } /// Handle returned from ThreadPool::spawn_handle. /// /// This handle is a future representing the completion of a different future /// spawned on to the thread pool. Created through the ThreadPool::spawn_handle /// function this handle will resolve when the future provided resolves on the /// thread pool. #[derive(Debug)] pub struct SpawnHandle<T, E>(oneshot::SpawnHandle<T, E>); impl<T, E> Future for SpawnHandle<T, E> { type Item = T; type Error = E; fn poll(&mut self) -> Poll<T, E> { self.0.poll() } }