1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
mod entry;
mod stack;
mod state;

pub(crate) use self::entry::{
    WorkerEntry as Entry,
};
pub(crate) use self::stack::Stack;
pub(crate) use self::state::{
    State,
    Lifecycle,
};

use pool::{self, Pool, BackupId};
use notifier::Notifier;
use sender::Sender;
use task::{self, Task, CanBlock};

use tokio_executor;

use futures::{Poll, Async};

use std::cell::Cell;
use std::marker::PhantomData;
use std::rc::Rc;
use std::sync::atomic::Ordering::{AcqRel, Acquire};
use std::sync::Arc;
use std::thread;
use std::time::{Duration, Instant};

/// Thread worker
///
/// This is passed to the [`around_worker`] callback set on [`Builder`]. This
/// callback is only expected to call [`run`] on it.
///
/// [`Builder`]: struct.Builder.html
/// [`around_worker`]: struct.Builder.html#method.around_worker
/// [`run`]: struct.Worker.html#method.run
#[derive(Debug)]
pub struct Worker {
    // Shared scheduler data
    pub(crate) inner: Arc<Pool>,

    // WorkerEntry index
    pub(crate) id: WorkerId,

    // Backup thread ID assigned to processing this worker.
    backup_id: BackupId,

    // Set to the task that is currently being polled by the worker. This is
    // needed so that `blocking` blocks are able to interact with this task.
    //
    // This has to be a raw pointer to make it compile, but great care is taken
    // when this is set.
    current_task: CurrentTask,

    // Set when the thread is in blocking mode.
    is_blocking: Cell<bool>,

    // Set when the worker should finalize on drop
    should_finalize: Cell<bool>,

    // Keep the value on the current thread.
    _p: PhantomData<Rc<()>>,
}

/// Tracks the state related to the currently running task.
#[derive(Debug)]
struct CurrentTask {
    /// This has to be a raw pointer to make it compile, but great care is taken
    /// when this is set.
    task: Cell<Option<*const Arc<Task>>>,

    /// Tracks the blocking capacity allocation state.
    can_block: Cell<CanBlock>,
}

/// Identifies a thread pool worker.
///
/// This identifier is unique scoped by the thread pool. It is possible that
/// different thread pool instances share worker identifier values.
#[derive(Debug, Clone, Hash, Eq, PartialEq)]
pub struct WorkerId(pub(crate) usize);

// Pointer to the current worker info
thread_local!(static CURRENT_WORKER: Cell<*const Worker> = Cell::new(0 as *const _));

impl Worker {
    pub(crate) fn new(id: WorkerId, backup_id: BackupId, inner: Arc<Pool>) -> Worker {
        Worker {
            inner,
            id,
            backup_id,
            current_task: CurrentTask::new(),
            is_blocking: Cell::new(false),
            should_finalize: Cell::new(false),
            _p: PhantomData,
        }
    }

    pub(crate) fn is_blocking(&self) -> bool {
        self.is_blocking.get()
    }

    /// Run the worker
    ///
    /// Returns `true` if the thread should keep running as a `backup` thread.
    pub(crate) fn do_run(&self) -> bool {
        // Create another worker... It's ok, this is just a new type around
        // `Pool` that is expected to stay on the current thread.
        CURRENT_WORKER.with(|c| {
            c.set(self as *const _);

            let inner = self.inner.clone();
            let mut sender = Sender { inner };

            // Enter an execution context
            let mut enter = tokio_executor::enter().unwrap();

            tokio_executor::with_default(&mut sender, &mut enter, |enter| {
                if let Some(ref callback) = self.inner.config.around_worker {
                    callback.call(self, enter);
                } else {
                    self.run();
                }
            });
        });

        // Can't be in blocking mode and finalization mode
        debug_assert!(!self.is_blocking.get() || !self.should_finalize.get());

        self.is_blocking.get()
    }

    pub(crate) fn with_current<F: FnOnce(Option<&Worker>) -> R, R>(f: F) -> R {
        CURRENT_WORKER.with(move |c| {
            let ptr = c.get();

            if ptr.is_null() {
                f(None)
            } else {
                f(Some(unsafe { &*ptr }))
            }
        })
    }

    /// Transition the current worker to a blocking worker
    pub(crate) fn transition_to_blocking(&self) -> Poll<(), ::BlockingError> {
        use self::CanBlock::*;

        // If we get this far, then `current_task` has been set.
        let task_ref = self.current_task.get_ref();

        // First step is to acquire blocking capacity for the task.
        match self.current_task.can_block() {
            // Capacity to block has already been allocated to this task.
            Allocated => {}

            // The task has already requested capacity to block, but there is
            // none yet available.
            NoCapacity => return Ok(Async::NotReady),

            // The task has yet to ask for capacity
            CanRequest => {
                // Atomically attempt to acquire blocking capacity, and if none
                // is available, register the task to be notified once capacity
                // becomes available.
                match self.inner.poll_blocking_capacity(task_ref)? {
                    Async::Ready(()) => {
                        self.current_task.set_can_block(Allocated);
                    }
                    Async::NotReady => {
                        self.current_task.set_can_block(NoCapacity);
                        return Ok(Async::NotReady);
                    }
                }
            }
        }

        // The task has been allocated blocking capacity. At this point, this is
        // when the current thread transitions from a worker to a backup thread.
        // To do so requires handing over the worker to another backup thread.

        if self.is_blocking.get() {
            // The thread is already in blocking mode, so there is nothing else
            // to do. Return `Ready` and allow the caller to block the thread.
            return Ok(().into());
        }

        trace!("transition to blocking state");

        // Transitioning to blocking requires handing over the worker state to
        // another thread so that the work queue can continue to be processed.

        self.inner.spawn_thread(self.id.clone(), &self.inner);

        // Track that the thread has now fully entered the blocking state.
        self.is_blocking.set(true);

        Ok(().into())
    }

    /// Transition from blocking
    pub(crate) fn transition_from_blocking(&self) {
        // TODO: Attempt to take ownership of the worker again.
    }

    /// Returns a reference to the worker's identifier.
    ///
    /// This identifier is unique scoped by the thread pool. It is possible that
    /// different thread pool instances share worker identifier values.
    pub fn id(&self) -> &WorkerId {
        &self.id
    }

    /// Run the worker
    ///
    /// This function blocks until the worker is shutting down.
    pub fn run(&self) {
        const MAX_SPINS: usize = 3;
        const LIGHT_SLEEP_INTERVAL: usize = 32;

        // Get the notifier.
        let notify = Arc::new(Notifier {
            inner: Arc::downgrade(&self.inner),
        });

        let mut first = true;
        let mut spin_cnt = 0;
        let mut tick = 0;

        while self.check_run_state(first) {
            first = false;

            // Poll inbound until empty, transferring all tasks to the internal
            // queue.
            let consistent = self.drain_inbound();

            // Run the next available task
            if self.try_run_task(&notify) {
                if self.is_blocking.get() {
                    // Exit out of the run state
                    return;
                }

                if tick % LIGHT_SLEEP_INTERVAL == 0 {
                    self.sleep_light();
                }

                tick = tick.wrapping_add(1);
                spin_cnt = 0;

                // As long as there is work, keep looping.
                continue;
            }

            if !consistent {
                spin_cnt = 0;
                continue;
            }

            spin_cnt += 1;

            // Yield the thread several times before it actually goes to sleep.
            if spin_cnt <= MAX_SPINS {
                thread::yield_now();
                continue;
            }

            tick = 0;
            spin_cnt = 0;

            // Starting to get sleeeeepy
            if !self.sleep() {
                return;
            }

            // If there still isn't any work to do, shutdown the worker?
        }

        // The pool is terminating. However, transitioning the pool state to
        // terminated is the very first step of the finalization process. Other
        // threads may not see this state and try to spawn a new thread. To
        // ensure consistency, before the current thread shuts down, it must
        // return the backup token to the stack.
        //
        // The returned result is ignored because `Err` represents the pool
        // shutting down. We are currently aware of this fact.
        let _ = self.inner.release_backup(self.backup_id);

        self.should_finalize.set(true);
    }

    /// Try to run a task
    ///
    /// Returns `true` if work was found.
    #[inline]
    fn try_run_task(&self, notify: &Arc<Notifier>) -> bool {
        if self.try_run_owned_task(notify) {
            return true;
        }

        self.try_steal_task(notify)
    }

    /// Checks the worker's current state, updating it as needed.
    ///
    /// Returns `true` if the worker should run.
    #[inline]
    fn check_run_state(&self, first: bool) -> bool {
        use self::Lifecycle::*;

        debug_assert!(!self.is_blocking.get());

        let mut state: State = self.entry().state.load(Acquire).into();

        loop {
            let pool_state: pool::State = self.inner.state.load(Acquire).into();

            if pool_state.is_terminated() {
                return false;
            }

            let mut next = state;

            match state.lifecycle() {
                Running => break,
                Notified | Signaled => {
                    // transition back to running
                    next.set_lifecycle(Running);
                }
                Shutdown | Sleeping => {
                    // The worker should never be in these states when calling
                    // this function.
                    panic!("unexpected worker state; lifecycle={:?}", state.lifecycle());
                }
            }

            let actual = self.entry().state.compare_and_swap(
                state.into(), next.into(), AcqRel).into();

            if actual == state {
                break;
            }

            state = actual;
        }

        // `first` is set to true the first time this function is called after
        // the thread has started.
        //
        // This check is to handle the scenario where a worker gets signaled
        // while it is already happily running. The `is_signaled` state is
        // intended to wake up a worker that has been previously sleeping in
        // effect increasing the number of active workers. If this is the first
        // time `check_run_state` is called, then being in a signalled state is
        // normal and the thread was started to handle it.  However, if this is
        // **not** the first time the fn was called, then the number of active
        // workers has not been increased by the signal, so `signal_work` has to
        // be called again to try to wake up another worker.
        //
        // For example, if the thread pool is configured to allow 4 workers.
        // Worker 1 is processing tasks from its `deque`. Worker 2 receives its
        // first task. Worker 2 will pick a random worker to signal. It does
        // this by popping off the sleep stack, but there is no guarantee that
        // workers on the sleep stack are actually sleeping. It is possible that
        // Worker 1 gets signaled.
        //
        // Without this check, in the above case, no additional workers will get
        // started, which results in the thread pool permanently being at 2
        // workers even though it should reach 4.
        if !first && state.is_signaled() {
            trace!("Worker::check_run_state; delegate signal");
            // This worker is not ready to be signaled, so delegate the signal
            // to another worker.
            self.inner.signal_work(&self.inner);
        }

        true
    }

    /// Runs the next task on this worker's queue.
    ///
    /// Returns `true` if work was found.
    fn try_run_owned_task(&self, notify: &Arc<Notifier>) -> bool {
        use deque::Pop;

        // Poll the internal queue for a task to run
        match self.entry().pop_task() {
            Pop::Data(task) => {
                self.run_task(task, notify);
                true
            }
            Pop::Empty => false,
            Pop::Retry => true,
        }
    }

    /// Tries to steal a task from another worker.
    ///
    /// Returns `true` if work was found
    fn try_steal_task(&self, notify: &Arc<Notifier>) -> bool {
        use deque::Steal;

        debug_assert!(!self.is_blocking.get());

        let len = self.inner.workers.len();
        let mut idx = self.inner.rand_usize() % len;
        let mut found_work = false;
        let start = idx;

        loop {
            if idx < len {
                match self.inner.workers[idx].steal_tasks(self.entry()) {
                    Steal::Data(task) => {
                        trace!("stole task");

                        self.run_task(task, notify);

                        trace!("try_steal_task -- signal_work; self={}; from={}",
                               self.id.0, idx);

                        // Signal other workers that work is available
                        //
                        // TODO: Should this be called here or before
                        // `run_task`?
                        self.inner.signal_work(&self.inner);

                        return true;
                    }
                    Steal::Empty => {}
                    Steal::Retry => found_work = true,
                }

                idx += 1;
            } else {
                idx = 0;
            }

            if idx == start {
                break;
            }
        }

        found_work
    }

    fn run_task(&self, task: Arc<Task>, notify: &Arc<Notifier>) {
        use task::Run::*;

        let run = self.run_task2(&task, notify);

        // TODO: Try to claim back the worker state in case the backup thread
        // did not start up fast enough. This is a performance optimization.

        match run {
            Idle => {}
            Schedule => {
                if self.is_blocking.get() {
                    // The future has been notified while it was running.
                    // However, the future also entered a blocking section,
                    // which released the worker state from this thread.
                    //
                    // This means that scheduling the future must be done from
                    // a point of view external to the worker set.
                    //
                    // We have to call `submit_external` instead of `submit`
                    // here because `self` is still set as the current worker.
                    self.inner.submit_external(task, &self.inner);
                } else {
                    self.entry().push_internal(task);
                }
            }
            Complete => {
                let mut state: pool::State = self.inner.state.load(Acquire).into();

                loop {
                    let mut next = state;
                    next.dec_num_futures();

                    let actual = self.inner.state.compare_and_swap(
                        state.into(), next.into(), AcqRel).into();

                    if actual == state {
                        trace!("task complete; state={:?}", next);

                        if state.num_futures() == 1 {
                            // If the thread pool has been flagged as shutdown,
                            // start terminating workers. This involves waking
                            // up any sleeping worker so that they can notice
                            // the shutdown state.
                            if next.is_terminated() {
                                self.inner.terminate_sleeping_workers();
                            }
                        }

                        // The worker's run loop will detect the shutdown state
                        // next iteration.
                        return;
                    }

                    state = actual;
                }
            }
        }
    }

    /// Actually run the task. This is where `Worker::current_task` is set.
    ///
    /// Great care is needed to ensure that `current_task` is unset in this
    /// function.
    fn run_task2(&self,
                 task: &Arc<Task>,
                 notify: &Arc<Notifier>)
        -> task::Run
    {
        struct Guard<'a> {
            worker: &'a Worker,
            allocated_at_run: bool
        }

        impl<'a> Drop for Guard<'a> {
            fn drop(&mut self) {
                // A task is allocated at run when it was explicitly notified
                // that the task has capacity to block. When this happens, that
                // capacity is automatically allocated to the notified task.
                // This capacity is "use it or lose it", so if the thread is not
                // transitioned to blocking in this call, then another task has
                // to be notified.
                if self.allocated_at_run && !self.worker.is_blocking.get() {
                    self.worker.inner.notify_blocking_task(&self.worker.inner);
                }

                self.worker.current_task.clear();
            }
        }

        let can_block = task.consume_blocking_allocation();

        // Set `current_task`
        self.current_task.set(task, can_block);

        // Create the guard, this ensures that `current_task` is unset when the
        // function returns, even if the return is caused by a panic.
        let _g = Guard {
            worker: self,
            allocated_at_run: can_block == CanBlock::Allocated
        };

        task.run(notify)
    }

    /// Drains all tasks on the extern queue and pushes them onto the internal
    /// queue.
    ///
    /// Returns `true` if the operation was able to complete in a consistent
    /// state.
    #[inline]
    fn drain_inbound(&self) -> bool {
        use task::Poll::*;

        let mut found_work = false;

        loop {
            let task = unsafe { self.entry().inbound.poll() };

            match task {
                Empty => {
                    if found_work {
                        // TODO: Why is this called on every iteration? Would it
                        // not be better to only signal when work was found
                        // after waking up?
                        trace!("found work while draining; signal_work");
                        self.inner.signal_work(&self.inner);
                    }

                    return true;
                }
                Inconsistent => {
                    if found_work {
                        trace!("found work while draining; signal_work");
                        self.inner.signal_work(&self.inner);
                    }

                    return false;
                }
                Data(task) => {
                    found_work = true;
                    self.entry().push_internal(task);
                }
            }
        }
    }

    /// Put the worker to sleep
    ///
    /// Returns `true` if woken up due to new work arriving.
    fn sleep(&self) -> bool {
        use self::Lifecycle::*;

        // Putting a worker to sleep is a multipart operation. This is, in part,
        // due to the fact that a worker can be notified without it being popped
        // from the sleep stack. Extra care is needed to deal with this.

        trace!("Worker::sleep; worker={:?}", self.id);

        let mut state: State = self.entry().state.load(Acquire).into();

        // The first part of the sleep process is to transition the worker state
        // to "pushed". Now, it may be that the worker is already pushed on the
        // sleeper stack, in which case, we don't push again.

        loop {
            let mut next = state;

            match state.lifecycle() {
                Running => {
                    // Try setting the pushed state
                    next.set_pushed();

                    // Transition the worker state to sleeping
                    next.set_lifecycle(Sleeping);
                }
                Notified | Signaled => {
                    // No need to sleep, transition back to running and move on.
                    next.set_lifecycle(Running);
                }
                Shutdown | Sleeping => {
                    // The worker cannot transition to sleep when already in a
                    // sleeping state.
                    panic!("unexpected worker state; actual={:?}", state.lifecycle());
                }
            }

            let actual = self.entry().state.compare_and_swap(
                state.into(), next.into(), AcqRel).into();

            if actual == state {
                if state.is_notified() {
                    // The previous state was notified, so we don't need to
                    // sleep.
                    return true;
                }

                if !state.is_pushed() {
                    debug_assert!(next.is_pushed());

                    trace!("  sleeping -- push to stack; idx={}", self.id.0);

                    // We obtained permission to push the worker into the
                    // sleeper queue.
                    if let Err(_) = self.inner.push_sleeper(self.id.0) {
                        trace!("  sleeping -- push to stack failed; idx={}", self.id.0);
                        // The push failed due to the pool being terminated.
                        //
                        // This is true because the "work" being woken up for is
                        // shutting down.
                        return true;
                    }
                }

                break;
            }

            state = actual;
        }

        trace!("    -> starting to sleep; idx={}", self.id.0);

        let sleep_until = self.inner.config.keep_alive
            .map(|dur| Instant::now() + dur);

        // The state has been transitioned to sleeping, we can now wait by
        // calling the parker. This is done in a loop as condvars can wakeup
        // spuriously.
        'sleep:
        loop {
            let mut drop_thread = false;

            match sleep_until {
                Some(when) => {
                    let now = Instant::now();

                    if when >= now {
                        drop_thread = true;
                    }

                    let dur = when - now;

                    unsafe {
                        (*self.entry().park.get())
                            .park_timeout(dur)
                            .unwrap();
                    }
                }
                None => {
                    unsafe {
                        (*self.entry().park.get())
                            .park()
                            .unwrap();
                    }
                }
            }

            trace!("    -> wakeup; idx={}", self.id.0);

            // Reload the state
            state = self.entry().state.load(Acquire).into();

            // If the worker has been notified, transition back to running.
            match state.lifecycle() {
                Sleeping => {
                    if !drop_thread {
                        // This goes back to the outer loop.
                        continue 'sleep;
                    }
                }
                Notified | Signaled => {
                    // Transition back to running
                    loop {
                        let mut next = state;
                        next.set_lifecycle(Running);

                        let actual = self.entry().state.compare_and_swap(
                            state.into(), next.into(), AcqRel).into();

                        if actual == state {
                            return true;
                        }

                        state = actual;
                    }
                }
                Shutdown | Running => {
                    // To get here, the block above transitioned the state to
                    // `Sleeping`. No other thread can concurrently
                    // transition to `Shutdown` or `Running`.
                    unreachable!();
                }
            }

            // The thread has reached the maximum permitted sleep duration.
            // It is now going to begin to shutdown.
            //
            // Doing this requires first releasing the thread to the backup
            // stack. Because the moment the worker state is transitioned to
            // `Shutdown`, other threads **expect** the thread's backup
            // entry to be available on the backup stack.
            //
            // However, it is possible that the worker is notified between
            // us pushing the backup entry onto the backup stack and
            // transitioning the worker to `Shutdown`. If this happens, the
            // current thread lost the token to run the backup entry and has
            // to shutdown no matter what.
            //
            // To deal with this, the worker is transitioned to another
            // thread. This is a pretty rare condition.
            //
            // If pushing on the backup stack fails, then the pool is being
            // terminated and the thread should just shutdown
            let backup_push_err = self.inner.release_backup(self.backup_id).is_err();

            if backup_push_err {
                debug_assert!({
                    let state: State = self.entry().state.load(Acquire).into();
                    state.lifecycle() != Sleeping
                });

                self.should_finalize.set(true);

                return true;
            }

            loop {
                let mut next = state;
                next.set_lifecycle(Shutdown);

                let actual: State = self.entry().state.compare_and_swap(
                    state.into(), next.into(), AcqRel).into();

                if actual == state {
                    // Transitioned to a shutdown state
                    return false;
                }

                match actual.lifecycle() {
                    Sleeping => {
                        state = actual;
                    }
                    Notified | Signaled => {
                        // Transition back to running
                        loop {
                            let mut next = state;
                            next.set_lifecycle(Running);

                            let actual = self.entry().state.compare_and_swap(
                                state.into(), next.into(), AcqRel).into();

                            if actual == state {
                                self.inner.spawn_thread(self.id.clone(), &self.inner);
                                return false;
                            }

                            state = actual;
                        }
                    }
                    Shutdown | Running => {
                        // To get here, the block above transitioned the state to
                        // `Sleeping`. No other thread can concurrently
                        // transition to `Shutdown` or `Running`.
                        unreachable!();
                    }
                }
            }
        }
    }

    /// This doesn't actually put the thread to sleep. It calls
    /// `park.park_timeout` with a duration of 0. This allows the park
    /// implementation to perform any work that might be done on an interval.
    fn sleep_light(&self) {
        unsafe {
            (*self.entry().park.get())
                .park_timeout(Duration::from_millis(0))
                .unwrap();
        }
    }

    fn entry(&self) -> &Entry {
        debug_assert!(!self.is_blocking.get());
        &self.inner.workers[self.id.0]
    }
}

impl Drop for Worker {
    fn drop(&mut self) {
        trace!("shutting down thread; idx={}", self.id.0);

        if self.should_finalize.get() {
            // Get all inbound work and push it onto the work queue. The work
            // queue is drained in the next step.
            self.drain_inbound();

            // Drain the work queue
            self.entry().drain_tasks();

            // TODO: Drain the work queue...
        }
    }
}

// ===== impl CurrentTask =====

impl CurrentTask {
    /// Returns a default `CurrentTask` representing no task.
    fn new() -> CurrentTask {
        CurrentTask {
            task: Cell::new(None),
            can_block: Cell::new(CanBlock::CanRequest),
        }
    }

    /// Returns a reference to the task.
    fn get_ref(&self) -> &Arc<Task> {
        unsafe { &*self.task.get().unwrap() }
    }

    fn can_block(&self) -> CanBlock {
        self.can_block.get()
    }

    fn set_can_block(&self, can_block: CanBlock) {
        self.can_block.set(can_block);
    }

    fn set(&self, task: &Arc<Task>, can_block: CanBlock) {
        self.task.set(Some(task as *const _));
        self.can_block.set(can_block);
    }

    /// Reset the `CurrentTask` to null state.
    fn clear(&self) {
        self.task.set(None);
        self.can_block.set(CanBlock::CanRequest);
    }
}

// ===== impl WorkerId =====

impl WorkerId {
    /// Returns a `WorkerId` representing the worker entry at index `idx`.
    pub(crate) fn new(idx: usize) -> WorkerId {
        WorkerId(idx)
    }
}