Struct smallvec::SmallVec [−][src]
pub struct SmallVec<A: Array> { /* fields omitted */ }
A Vec
-like container that can store a small number of elements inline.
SmallVec
acts like a vector, but can store a limited amount of data inline within the
Smallvec
struct rather than in a separate allocation. If the data exceeds this limit, the
SmallVec
will "spill" its data onto the heap, allocating a new buffer to hold it.
The amount of data that a SmallVec
can store inline depends on its backing store. The backing
store can be any type that implements the Array
trait; usually it is a small fixed-sized
array. For example a SmallVec<[u64; 8]>
can hold up to eight 64-bit integers inline.
Example
use smallvec::SmallVec; let mut v = SmallVec::<[u8; 4]>::new(); // initialize an empty vector // The vector can hold up to 4 items without spilling onto the heap. v.extend(0..4); assert_eq!(v.len(), 4); assert!(!v.spilled()); // Pushing another element will force the buffer to spill: v.push(4); assert_eq!(v.len(), 5); assert!(v.spilled());
Methods
impl<A: Array> SmallVec<A>
[src]
impl<A: Array> SmallVec<A>
ⓘImportant traits for SmallVec<A>pub fn new() -> SmallVec<A>
[src]
pub fn new() -> SmallVec<A>
Construct an empty vector
pub fn with_capacity(n: usize) -> Self
[src]
pub fn with_capacity(n: usize) -> Self
Construct an empty vector with enough capacity pre-allocated to store at least n
elements.
Will create a heap allocation only if n
is larger than the inline capacity.
let v: SmallVec<[u8; 3]> = SmallVec::with_capacity(100); assert!(v.is_empty()); assert!(v.capacity() >= 100);
ⓘImportant traits for SmallVec<A>pub fn from_vec(vec: Vec<A::Item>) -> SmallVec<A>
[src]
pub fn from_vec(vec: Vec<A::Item>) -> SmallVec<A>
Construct a new SmallVec
from a Vec<A::Item>
.
Elements will be copied to the inline buffer if vec.capacity() <= A::size().
use smallvec::SmallVec; let vec = vec![1, 2, 3, 4, 5]; let small_vec: SmallVec<[_; 3]> = SmallVec::from_vec(vec); assert_eq!(&*small_vec, &[1, 2, 3, 4, 5]);
ⓘImportant traits for SmallVec<A>pub fn from_buf(buf: A) -> SmallVec<A>
[src]
pub fn from_buf(buf: A) -> SmallVec<A>
Constructs a new SmallVec
on the stack from an A
without
copying elements.
use smallvec::SmallVec; let buf = [1, 2, 3, 4, 5]; let small_vec: SmallVec<_> = SmallVec::from_buf(buf); assert_eq!(&*small_vec, &[1, 2, 3, 4, 5]);
ⓘImportant traits for SmallVec<A>pub fn from_buf_and_len(buf: A, len: usize) -> SmallVec<A>
[src]
pub fn from_buf_and_len(buf: A, len: usize) -> SmallVec<A>
Constructs a new SmallVec
on the stack from an A
without
copying elements. Also sets the length, which must be less or
equal to the size of buf
.
use smallvec::SmallVec; let buf = [1, 2, 3, 4, 5, 0, 0, 0]; let small_vec: SmallVec<_> = SmallVec::from_buf_and_len(buf, 5); assert_eq!(&*small_vec, &[1, 2, 3, 4, 5]);
ⓘImportant traits for SmallVec<A>pub unsafe fn from_buf_and_len_unchecked(buf: A, len: usize) -> SmallVec<A>
[src]
pub unsafe fn from_buf_and_len_unchecked(buf: A, len: usize) -> SmallVec<A>
Constructs a new SmallVec
on the stack from an A
without
copying elements. Also sets the length. The user is responsible
for ensuring that len <= A::size()
.
use smallvec::SmallVec; let buf = [1, 2, 3, 4, 5, 0, 0, 0]; let small_vec: SmallVec<_> = unsafe { SmallVec::from_buf_and_len_unchecked(buf, 5) }; assert_eq!(&*small_vec, &[1, 2, 3, 4, 5]);
pub unsafe fn set_len(&mut self, new_len: usize)
[src]
pub unsafe fn set_len(&mut self, new_len: usize)
Sets the length of a vector.
This will explicitly set the size of the vector, without actually modifying its buffers, so it is up to the caller to ensure that the vector is actually the specified size.
pub fn inline_size(&self) -> usize
[src]
pub fn inline_size(&self) -> usize
The maximum number of elements this vector can hold inline
pub fn len(&self) -> usize
[src]
pub fn len(&self) -> usize
The number of elements stored in the vector
pub fn is_empty(&self) -> bool
[src]
pub fn is_empty(&self) -> bool
Returns true
if the vector is empty
pub fn capacity(&self) -> usize
[src]
pub fn capacity(&self) -> usize
The number of items the vector can hold without reallocating
pub fn spilled(&self) -> bool
[src]
pub fn spilled(&self) -> bool
Returns true
if the data has spilled into a separate heap-allocated buffer.
ⓘImportant traits for Drain<'a, T>pub fn drain(&mut self) -> Drain<A::Item>
[src]
pub fn drain(&mut self) -> Drain<A::Item>
Empty the vector and return an iterator over its former contents.
pub fn push(&mut self, value: A::Item)
[src]
pub fn push(&mut self, value: A::Item)
Append an item to the vector.
pub fn pop(&mut self) -> Option<A::Item>
[src]
pub fn pop(&mut self) -> Option<A::Item>
Remove an item from the end of the vector and return it, or None if empty.
pub fn grow(&mut self, new_cap: usize)
[src]
pub fn grow(&mut self, new_cap: usize)
Re-allocate to set the capacity to max(new_cap, inline_size())
.
Panics if new_cap
is less than the vector's length.
pub fn reserve(&mut self, additional: usize)
[src]
pub fn reserve(&mut self, additional: usize)
Reserve capacity for additional
more elements to be inserted.
May reserve more space to avoid frequent reallocations.
If the new capacity would overflow usize
then it will be set to usize::max_value()
instead. (This means that inserting additional
new elements is not guaranteed to be
possible after calling this function.)
pub fn reserve_exact(&mut self, additional: usize)
[src]
pub fn reserve_exact(&mut self, additional: usize)
Reserve the minumum capacity for additional
more elements to be inserted.
Panics if the new capacity overflows usize
.
pub fn shrink_to_fit(&mut self)
[src]
pub fn shrink_to_fit(&mut self)
Shrink the capacity of the vector as much as possible.
When possible, this will move data from an external heap buffer to the vector's inline storage.
pub fn truncate(&mut self, len: usize)
[src]
pub fn truncate(&mut self, len: usize)
Shorten the vector, keeping the first len
elements and dropping the rest.
If len
is greater than or equal to the vector's current length, this has no
effect.
This does not re-allocate. If you want the vector's capacity to shrink, call
shrink_to_fit
after truncating.
pub fn as_slice(&self) -> &[A::Item]
[src]
pub fn as_slice(&self) -> &[A::Item]
Extracts a slice containing the entire vector.
Equivalent to &s[..]
.
pub fn as_mut_slice(&mut self) -> &mut [A::Item]
[src]
pub fn as_mut_slice(&mut self) -> &mut [A::Item]
Extracts a mutable slice of the entire vector.
Equivalent to &mut s[..]
.
pub fn swap_remove(&mut self, index: usize) -> A::Item
[src]
pub fn swap_remove(&mut self, index: usize) -> A::Item
Remove the element at position index
, replacing it with the last element.
This does not preserve ordering, but is O(1).
Panics if index
is out of bounds.
pub fn clear(&mut self)
[src]
pub fn clear(&mut self)
Remove all elements from the vector.
pub fn remove(&mut self, index: usize) -> A::Item
[src]
pub fn remove(&mut self, index: usize) -> A::Item
Remove and return the element at position index
, shifting all elements after it to the
left.
Panics if index
is out of bounds.
pub fn insert(&mut self, index: usize, element: A::Item)
[src]
pub fn insert(&mut self, index: usize, element: A::Item)
Insert an element at position index
, shifting all elements after it to the right.
Panics if index
is out of bounds.
pub fn insert_many<I: IntoIterator<Item = A::Item>>(
&mut self,
index: usize,
iterable: I
)
[src]
pub fn insert_many<I: IntoIterator<Item = A::Item>>(
&mut self,
index: usize,
iterable: I
)
Insert multiple elements at position index
, shifting all following elements toward the
back.
pub fn into_vec(self) -> Vec<A::Item>
[src]
pub fn into_vec(self) -> Vec<A::Item>
Convert a SmallVec to a Vec, without reallocating if the SmallVec has already spilled onto the heap.
pub fn into_inner(self) -> Result<A, Self>
[src]
pub fn into_inner(self) -> Result<A, Self>
Convert the SmallVec into an A
if possible. Otherwise return Err(Self)
.
This method returns Err(Self)
if the SmallVec is too short (and the A
contains uninitialized elements),
or if the SmallVec is too long (and all the elements were spilled to the heap).
pub fn retain<F: FnMut(&mut A::Item) -> bool>(&mut self, f: F)
[src]
pub fn retain<F: FnMut(&mut A::Item) -> bool>(&mut self, f: F)
Retains only the elements specified by the predicate.
In other words, remove all elements e
such that f(&e)
returns false
.
This method operates in place and preserves the order of the retained
elements.
pub fn dedup(&mut self) where
A::Item: PartialEq<A::Item>,
[src]
pub fn dedup(&mut self) where
A::Item: PartialEq<A::Item>,
Removes consecutive duplicate elements.
pub fn dedup_by<F>(&mut self, same_bucket: F) where
F: FnMut(&mut A::Item, &mut A::Item) -> bool,
[src]
pub fn dedup_by<F>(&mut self, same_bucket: F) where
F: FnMut(&mut A::Item, &mut A::Item) -> bool,
Removes consecutive duplicate elements using the given equality relation.
pub fn dedup_by_key<F, K>(&mut self, key: F) where
F: FnMut(&mut A::Item) -> K,
K: PartialEq<K>,
[src]
pub fn dedup_by_key<F, K>(&mut self, key: F) where
F: FnMut(&mut A::Item) -> K,
K: PartialEq<K>,
Removes consecutive elements that map to the same key.
impl<A: Array> SmallVec<A> where
A::Item: Copy,
[src]
impl<A: Array> SmallVec<A> where
A::Item: Copy,
pub fn from_slice(slice: &[A::Item]) -> Self
[src]
pub fn from_slice(slice: &[A::Item]) -> Self
Copy the elements from a slice into a new SmallVec
.
For slices of Copy
types, this is more efficient than SmallVec::from(slice)
.
pub fn insert_from_slice(&mut self, index: usize, slice: &[A::Item])
[src]
pub fn insert_from_slice(&mut self, index: usize, slice: &[A::Item])
Copy elements from a slice into the vector at position index
, shifting any following
elements toward the back.
For slices of Copy
types, this is more efficient than insert
.
pub fn extend_from_slice(&mut self, slice: &[A::Item])
[src]
pub fn extend_from_slice(&mut self, slice: &[A::Item])
Copy elements from a slice and append them to the vector.
For slices of Copy
types, this is more efficient than extend
.
impl<A: Array> SmallVec<A> where
A::Item: Clone,
[src]
impl<A: Array> SmallVec<A> where
A::Item: Clone,
pub fn resize(&mut self, len: usize, value: A::Item)
[src]
pub fn resize(&mut self, len: usize, value: A::Item)
Resizes the vector so that its length is equal to len
.
If len
is less than the current length, the vector simply truncated.
If len
is greater than the current length, value
is appended to the
vector until its length equals len
.
pub fn from_elem(elem: A::Item, n: usize) -> Self
[src]
pub fn from_elem(elem: A::Item, n: usize) -> Self
Creates a SmallVec
with n
copies of elem
.
use smallvec::SmallVec; let v = SmallVec::<[char; 128]>::from_elem('d', 2); assert_eq!(v, SmallVec::from_buf(['d', 'd']));
Methods from Deref<Target = [A::Item]>
pub const fn len(&self) -> usize
1.0.0[src]
pub const fn len(&self) -> usize
pub const fn is_empty(&self) -> bool
1.0.0[src]
pub const fn is_empty(&self) -> bool
pub fn first(&self) -> Option<&T>
1.0.0[src]
pub fn first(&self) -> Option<&T>
Returns the first element of the slice, or None
if it is empty.
Examples
let v = [10, 40, 30]; assert_eq!(Some(&10), v.first()); let w: &[i32] = &[]; assert_eq!(None, w.first());
pub fn first_mut(&mut self) -> Option<&mut T>
1.0.0[src]
pub fn first_mut(&mut self) -> Option<&mut T>
Returns a mutable pointer to the first element of the slice, or None
if it is empty.
Examples
let x = &mut [0, 1, 2]; if let Some(first) = x.first_mut() { *first = 5; } assert_eq!(x, &[5, 1, 2]);
pub fn split_first(&self) -> Option<(&T, &[T])>
1.5.0[src]
pub fn split_first(&self) -> Option<(&T, &[T])>
Returns the first and all the rest of the elements of the slice, or None
if it is empty.
Examples
let x = &[0, 1, 2]; if let Some((first, elements)) = x.split_first() { assert_eq!(first, &0); assert_eq!(elements, &[1, 2]); }
pub fn split_first_mut(&mut self) -> Option<(&mut T, &mut [T])>
1.5.0[src]
pub fn split_first_mut(&mut self) -> Option<(&mut T, &mut [T])>
Returns the first and all the rest of the elements of the slice, or None
if it is empty.
Examples
let x = &mut [0, 1, 2]; if let Some((first, elements)) = x.split_first_mut() { *first = 3; elements[0] = 4; elements[1] = 5; } assert_eq!(x, &[3, 4, 5]);
pub fn split_last(&self) -> Option<(&T, &[T])>
1.5.0[src]
pub fn split_last(&self) -> Option<(&T, &[T])>
Returns the last and all the rest of the elements of the slice, or None
if it is empty.
Examples
let x = &[0, 1, 2]; if let Some((last, elements)) = x.split_last() { assert_eq!(last, &2); assert_eq!(elements, &[0, 1]); }
pub fn split_last_mut(&mut self) -> Option<(&mut T, &mut [T])>
1.5.0[src]
pub fn split_last_mut(&mut self) -> Option<(&mut T, &mut [T])>
Returns the last and all the rest of the elements of the slice, or None
if it is empty.
Examples
let x = &mut [0, 1, 2]; if let Some((last, elements)) = x.split_last_mut() { *last = 3; elements[0] = 4; elements[1] = 5; } assert_eq!(x, &[4, 5, 3]);
pub fn last(&self) -> Option<&T>
1.0.0[src]
pub fn last(&self) -> Option<&T>
Returns the last element of the slice, or None
if it is empty.
Examples
let v = [10, 40, 30]; assert_eq!(Some(&30), v.last()); let w: &[i32] = &[]; assert_eq!(None, w.last());
pub fn last_mut(&mut self) -> Option<&mut T>
1.0.0[src]
pub fn last_mut(&mut self) -> Option<&mut T>
Returns a mutable pointer to the last item in the slice.
Examples
let x = &mut [0, 1, 2]; if let Some(last) = x.last_mut() { *last = 10; } assert_eq!(x, &[0, 1, 10]);
pub fn get<I>(&self, index: I) -> Option<&<I as SliceIndex<[T]>>::Output> where
I: SliceIndex<[T]>,
1.0.0[src]
pub fn get<I>(&self, index: I) -> Option<&<I as SliceIndex<[T]>>::Output> where
I: SliceIndex<[T]>,
Returns a reference to an element or subslice depending on the type of index.
- If given a position, returns a reference to the element at that
position or
None
if out of bounds. - If given a range, returns the subslice corresponding to that range,
or
None
if out of bounds.
Examples
let v = [10, 40, 30]; assert_eq!(Some(&40), v.get(1)); assert_eq!(Some(&[10, 40][..]), v.get(0..2)); assert_eq!(None, v.get(3)); assert_eq!(None, v.get(0..4));
pub fn get_mut<I>(
&mut self,
index: I
) -> Option<&mut <I as SliceIndex<[T]>>::Output> where
I: SliceIndex<[T]>,
1.0.0[src]
pub fn get_mut<I>(
&mut self,
index: I
) -> Option<&mut <I as SliceIndex<[T]>>::Output> where
I: SliceIndex<[T]>,
Returns a mutable reference to an element or subslice depending on the
type of index (see get
) or None
if the index is out of bounds.
Examples
let x = &mut [0, 1, 2]; if let Some(elem) = x.get_mut(1) { *elem = 42; } assert_eq!(x, &[0, 42, 2]);
pub unsafe fn get_unchecked<I>(
&self,
index: I
) -> &<I as SliceIndex<[T]>>::Output where
I: SliceIndex<[T]>,
1.0.0[src]
pub unsafe fn get_unchecked<I>(
&self,
index: I
) -> &<I as SliceIndex<[T]>>::Output where
I: SliceIndex<[T]>,
Returns a reference to an element or subslice, without doing bounds checking.
This is generally not recommended, use with caution! For a safe
alternative see get
.
Examples
let x = &[1, 2, 4]; unsafe { assert_eq!(x.get_unchecked(1), &2); }
pub unsafe fn get_unchecked_mut<I>(
&mut self,
index: I
) -> &mut <I as SliceIndex<[T]>>::Output where
I: SliceIndex<[T]>,
1.0.0[src]
pub unsafe fn get_unchecked_mut<I>(
&mut self,
index: I
) -> &mut <I as SliceIndex<[T]>>::Output where
I: SliceIndex<[T]>,
Returns a mutable reference to an element or subslice, without doing bounds checking.
This is generally not recommended, use with caution! For a safe
alternative see get_mut
.
Examples
let x = &mut [1, 2, 4]; unsafe { let elem = x.get_unchecked_mut(1); *elem = 13; } assert_eq!(x, &[1, 13, 4]);
pub const fn as_ptr(&self) -> *const T
1.0.0[src]
pub const fn as_ptr(&self) -> *const T
Returns a raw pointer to the slice's buffer.
The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.
Modifying the container referenced by this slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.
Examples
let x = &[1, 2, 4]; let x_ptr = x.as_ptr(); unsafe { for i in 0..x.len() { assert_eq!(x.get_unchecked(i), &*x_ptr.offset(i as isize)); } }
pub fn as_mut_ptr(&mut self) -> *mut T
1.0.0[src]
pub fn as_mut_ptr(&mut self) -> *mut T
Returns an unsafe mutable pointer to the slice's buffer.
The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.
Modifying the container referenced by this slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.
Examples
let x = &mut [1, 2, 4]; let x_ptr = x.as_mut_ptr(); unsafe { for i in 0..x.len() { *x_ptr.offset(i as isize) += 2; } } assert_eq!(x, &[3, 4, 6]);
pub fn swap(&mut self, a: usize, b: usize)
1.0.0[src]
pub fn swap(&mut self, a: usize, b: usize)
Swaps two elements in the slice.
Arguments
- a - The index of the first element
- b - The index of the second element
Panics
Panics if a
or b
are out of bounds.
Examples
let mut v = ["a", "b", "c", "d"]; v.swap(1, 3); assert!(v == ["a", "d", "c", "b"]);
pub fn reverse(&mut self)
1.0.0[src]
pub fn reverse(&mut self)
Reverses the order of elements in the slice, in place.
Examples
let mut v = [1, 2, 3]; v.reverse(); assert!(v == [3, 2, 1]);
pub fn iter(&self) -> Iter<T>
1.0.0[src]
pub fn iter(&self) -> Iter<T>
Returns an iterator over the slice.
Examples
let x = &[1, 2, 4]; let mut iterator = x.iter(); assert_eq!(iterator.next(), Some(&1)); assert_eq!(iterator.next(), Some(&2)); assert_eq!(iterator.next(), Some(&4)); assert_eq!(iterator.next(), None);
pub fn iter_mut(&mut self) -> IterMut<T>
1.0.0[src]
pub fn iter_mut(&mut self) -> IterMut<T>
Returns an iterator that allows modifying each value.
Examples
let x = &mut [1, 2, 4]; for elem in x.iter_mut() { *elem += 2; } assert_eq!(x, &[3, 4, 6]);
pub fn windows(&self, size: usize) -> Windows<T>
1.0.0[src]
pub fn windows(&self, size: usize) -> Windows<T>
Returns an iterator over all contiguous windows of length
size
. The windows overlap. If the slice is shorter than
size
, the iterator returns no values.
Panics
Panics if size
is 0.
Examples
let slice = ['r', 'u', 's', 't']; let mut iter = slice.windows(2); assert_eq!(iter.next().unwrap(), &['r', 'u']); assert_eq!(iter.next().unwrap(), &['u', 's']); assert_eq!(iter.next().unwrap(), &['s', 't']); assert!(iter.next().is_none());
If the slice is shorter than size
:
let slice = ['f', 'o', 'o']; let mut iter = slice.windows(4); assert!(iter.next().is_none());
pub fn chunks(&self, chunk_size: usize) -> Chunks<T>
1.0.0[src]
pub fn chunks(&self, chunk_size: usize) -> Chunks<T>
Returns an iterator over chunk_size
elements of the slice at a
time. The chunks are slices and do not overlap. If chunk_size
does
not divide the length of the slice, then the last chunk will
not have length chunk_size
.
See exact_chunks
for a variant of this iterator that returns chunks
of always exactly chunk_size
elements.
Panics
Panics if chunk_size
is 0.
Examples
let slice = ['l', 'o', 'r', 'e', 'm']; let mut iter = slice.chunks(2); assert_eq!(iter.next().unwrap(), &['l', 'o']); assert_eq!(iter.next().unwrap(), &['r', 'e']); assert_eq!(iter.next().unwrap(), &['m']); assert!(iter.next().is_none());
pub fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<T>
1.0.0[src]
pub fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<T>
Returns an iterator over chunk_size
elements of the slice at a time.
The chunks are mutable slices, and do not overlap. If chunk_size
does
not divide the length of the slice, then the last chunk will not
have length chunk_size
.
See exact_chunks_mut
for a variant of this iterator that returns chunks
of always exactly chunk_size
elements.
Panics
Panics if chunk_size
is 0.
Examples
let v = &mut [0, 0, 0, 0, 0]; let mut count = 1; for chunk in v.chunks_mut(2) { for elem in chunk.iter_mut() { *elem += count; } count += 1; } assert_eq!(v, &[1, 1, 2, 2, 3]);
pub fn exact_chunks(&self, chunk_size: usize) -> ExactChunks<T>
[src]
pub fn exact_chunks(&self, chunk_size: usize) -> ExactChunks<T>
exact_chunks
)Returns an iterator over chunk_size
elements of the slice at a
time. The chunks are slices and do not overlap. If chunk_size
does
not divide the length of the slice, then the last up to chunk_size-1
elements will be omitted and can be retrieved from the remainder
function of the iterator.
Due to each chunk having exactly chunk_size
elements, the compiler
can often optimize the resulting code better than in the case of
chunks
.
Panics
Panics if chunk_size
is 0.
Examples
#![feature(exact_chunks)] let slice = ['l', 'o', 'r', 'e', 'm']; let mut iter = slice.exact_chunks(2); assert_eq!(iter.next().unwrap(), &['l', 'o']); assert_eq!(iter.next().unwrap(), &['r', 'e']); assert!(iter.next().is_none());
pub fn exact_chunks_mut(&mut self, chunk_size: usize) -> ExactChunksMut<T>
[src]
pub fn exact_chunks_mut(&mut self, chunk_size: usize) -> ExactChunksMut<T>
exact_chunks
)Returns an iterator over chunk_size
elements of the slice at a time.
The chunks are mutable slices, and do not overlap. If chunk_size
does
not divide the length of the slice, then the last up to chunk_size-1
elements will be omitted and can be retrieved from the into_remainder
function of the iterator.
Due to each chunk having exactly chunk_size
elements, the compiler
can often optimize the resulting code better than in the case of
chunks_mut
.
Panics
Panics if chunk_size
is 0.
Examples
#![feature(exact_chunks)] let v = &mut [0, 0, 0, 0, 0]; let mut count = 1; for chunk in v.exact_chunks_mut(2) { for elem in chunk.iter_mut() { *elem += count; } count += 1; } assert_eq!(v, &[1, 1, 2, 2, 0]);
pub fn split_at(&self, mid: usize) -> (&[T], &[T])
1.0.0[src]
pub fn split_at(&self, mid: usize) -> (&[T], &[T])
Divides one slice into two at an index.
The first will contain all indices from [0, mid)
(excluding
the index mid
itself) and the second will contain all
indices from [mid, len)
(excluding the index len
itself).
Panics
Panics if mid > len
.
Examples
let v = [1, 2, 3, 4, 5, 6]; { let (left, right) = v.split_at(0); assert!(left == []); assert!(right == [1, 2, 3, 4, 5, 6]); } { let (left, right) = v.split_at(2); assert!(left == [1, 2]); assert!(right == [3, 4, 5, 6]); } { let (left, right) = v.split_at(6); assert!(left == [1, 2, 3, 4, 5, 6]); assert!(right == []); }
pub fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T])
1.0.0[src]
pub fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T])
Divides one mutable slice into two at an index.
The first will contain all indices from [0, mid)
(excluding
the index mid
itself) and the second will contain all
indices from [mid, len)
(excluding the index len
itself).
Panics
Panics if mid > len
.
Examples
let mut v = [1, 0, 3, 0, 5, 6]; // scoped to restrict the lifetime of the borrows { let (left, right) = v.split_at_mut(2); assert!(left == [1, 0]); assert!(right == [3, 0, 5, 6]); left[1] = 2; right[1] = 4; } assert!(v == [1, 2, 3, 4, 5, 6]);
pub fn split<F>(&self, pred: F) -> Split<T, F> where
F: FnMut(&T) -> bool,
1.0.0[src]
pub fn split<F>(&self, pred: F) -> Split<T, F> where
F: FnMut(&T) -> bool,
Returns an iterator over subslices separated by elements that match
pred
. The matched element is not contained in the subslices.
Examples
let slice = [10, 40, 33, 20]; let mut iter = slice.split(|num| num % 3 == 0); assert_eq!(iter.next().unwrap(), &[10, 40]); assert_eq!(iter.next().unwrap(), &[20]); assert!(iter.next().is_none());
If the first element is matched, an empty slice will be the first item returned by the iterator. Similarly, if the last element in the slice is matched, an empty slice will be the last item returned by the iterator:
let slice = [10, 40, 33]; let mut iter = slice.split(|num| num % 3 == 0); assert_eq!(iter.next().unwrap(), &[10, 40]); assert_eq!(iter.next().unwrap(), &[]); assert!(iter.next().is_none());
If two matched elements are directly adjacent, an empty slice will be present between them:
let slice = [10, 6, 33, 20]; let mut iter = slice.split(|num| num % 3 == 0); assert_eq!(iter.next().unwrap(), &[10]); assert_eq!(iter.next().unwrap(), &[]); assert_eq!(iter.next().unwrap(), &[20]); assert!(iter.next().is_none());
pub fn split_mut<F>(&mut self, pred: F) -> SplitMut<T, F> where
F: FnMut(&T) -> bool,
1.0.0[src]
pub fn split_mut<F>(&mut self, pred: F) -> SplitMut<T, F> where
F: FnMut(&T) -> bool,
Returns an iterator over mutable subslices separated by elements that
match pred
. The matched element is not contained in the subslices.
Examples
let mut v = [10, 40, 30, 20, 60, 50]; for group in v.split_mut(|num| *num % 3 == 0) { group[0] = 1; } assert_eq!(v, [1, 40, 30, 1, 60, 1]);
pub fn rsplit<F>(&self, pred: F) -> RSplit<T, F> where
F: FnMut(&T) -> bool,
1.27.0[src]
pub fn rsplit<F>(&self, pred: F) -> RSplit<T, F> where
F: FnMut(&T) -> bool,
Returns an iterator over subslices separated by elements that match
pred
, starting at the end of the slice and working backwards.
The matched element is not contained in the subslices.
Examples
let slice = [11, 22, 33, 0, 44, 55]; let mut iter = slice.rsplit(|num| *num == 0); assert_eq!(iter.next().unwrap(), &[44, 55]); assert_eq!(iter.next().unwrap(), &[11, 22, 33]); assert_eq!(iter.next(), None);
As with split()
, if the first or last element is matched, an empty
slice will be the first (or last) item returned by the iterator.
let v = &[0, 1, 1, 2, 3, 5, 8]; let mut it = v.rsplit(|n| *n % 2 == 0); assert_eq!(it.next().unwrap(), &[]); assert_eq!(it.next().unwrap(), &[3, 5]); assert_eq!(it.next().unwrap(), &[1, 1]); assert_eq!(it.next().unwrap(), &[]); assert_eq!(it.next(), None);
pub fn rsplit_mut<F>(&mut self, pred: F) -> RSplitMut<T, F> where
F: FnMut(&T) -> bool,
1.27.0[src]
pub fn rsplit_mut<F>(&mut self, pred: F) -> RSplitMut<T, F> where
F: FnMut(&T) -> bool,
Returns an iterator over mutable subslices separated by elements that
match pred
, starting at the end of the slice and working
backwards. The matched element is not contained in the subslices.
Examples
let mut v = [100, 400, 300, 200, 600, 500]; let mut count = 0; for group in v.rsplit_mut(|num| *num % 3 == 0) { count += 1; group[0] = count; } assert_eq!(v, [3, 400, 300, 2, 600, 1]);
pub fn splitn<F>(&self, n: usize, pred: F) -> SplitN<T, F> where
F: FnMut(&T) -> bool,
1.0.0[src]
pub fn splitn<F>(&self, n: usize, pred: F) -> SplitN<T, F> where
F: FnMut(&T) -> bool,
Returns an iterator over subslices separated by elements that match
pred
, limited to returning at most n
items. The matched element is
not contained in the subslices.
The last element returned, if any, will contain the remainder of the slice.
Examples
Print the slice split once by numbers divisible by 3 (i.e. [10, 40]
,
[20, 60, 50]
):
let v = [10, 40, 30, 20, 60, 50]; for group in v.splitn(2, |num| *num % 3 == 0) { println!("{:?}", group); }
pub fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<T, F> where
F: FnMut(&T) -> bool,
1.0.0[src]
pub fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<T, F> where
F: FnMut(&T) -> bool,
Returns an iterator over subslices separated by elements that match
pred
, limited to returning at most n
items. The matched element is
not contained in the subslices.
The last element returned, if any, will contain the remainder of the slice.
Examples
let mut v = [10, 40, 30, 20, 60, 50]; for group in v.splitn_mut(2, |num| *num % 3 == 0) { group[0] = 1; } assert_eq!(v, [1, 40, 30, 1, 60, 50]);
pub fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<T, F> where
F: FnMut(&T) -> bool,
1.0.0[src]
pub fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<T, F> where
F: FnMut(&T) -> bool,
Returns an iterator over subslices separated by elements that match
pred
limited to returning at most n
items. This starts at the end of
the slice and works backwards. The matched element is not contained in
the subslices.
The last element returned, if any, will contain the remainder of the slice.
Examples
Print the slice split once, starting from the end, by numbers divisible
by 3 (i.e. [50]
, [10, 40, 30, 20]
):
let v = [10, 40, 30, 20, 60, 50]; for group in v.rsplitn(2, |num| *num % 3 == 0) { println!("{:?}", group); }
pub fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<T, F> where
F: FnMut(&T) -> bool,
1.0.0[src]
pub fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<T, F> where
F: FnMut(&T) -> bool,
Returns an iterator over subslices separated by elements that match
pred
limited to returning at most n
items. This starts at the end of
the slice and works backwards. The matched element is not contained in
the subslices.
The last element returned, if any, will contain the remainder of the slice.
Examples
let mut s = [10, 40, 30, 20, 60, 50]; for group in s.rsplitn_mut(2, |num| *num % 3 == 0) { group[0] = 1; } assert_eq!(s, [1, 40, 30, 20, 60, 1]);
pub fn contains(&self, x: &T) -> bool where
T: PartialEq<T>,
1.0.0[src]
pub fn contains(&self, x: &T) -> bool where
T: PartialEq<T>,
Returns true
if the slice contains an element with the given value.
Examples
let v = [10, 40, 30]; assert!(v.contains(&30)); assert!(!v.contains(&50));
pub fn starts_with(&self, needle: &[T]) -> bool where
T: PartialEq<T>,
1.0.0[src]
pub fn starts_with(&self, needle: &[T]) -> bool where
T: PartialEq<T>,
Returns true
if needle
is a prefix of the slice.
Examples
let v = [10, 40, 30]; assert!(v.starts_with(&[10])); assert!(v.starts_with(&[10, 40])); assert!(!v.starts_with(&[50])); assert!(!v.starts_with(&[10, 50]));
Always returns true
if needle
is an empty slice:
let v = &[10, 40, 30]; assert!(v.starts_with(&[])); let v: &[u8] = &[]; assert!(v.starts_with(&[]));
pub fn ends_with(&self, needle: &[T]) -> bool where
T: PartialEq<T>,
1.0.0[src]
pub fn ends_with(&self, needle: &[T]) -> bool where
T: PartialEq<T>,
Returns true
if needle
is a suffix of the slice.
Examples
let v = [10, 40, 30]; assert!(v.ends_with(&[30])); assert!(v.ends_with(&[40, 30])); assert!(!v.ends_with(&[50])); assert!(!v.ends_with(&[50, 30]));
Always returns true
if needle
is an empty slice:
let v = &[10, 40, 30]; assert!(v.ends_with(&[])); let v: &[u8] = &[]; assert!(v.ends_with(&[]));
pub fn binary_search(&self, x: &T) -> Result<usize, usize> where
T: Ord,
1.0.0[src]
pub fn binary_search(&self, x: &T) -> Result<usize, usize> where
T: Ord,
Binary searches this sorted slice for a given element.
If the value is found then Ok
is returned, containing the
index of the matching element; if the value is not found then
Err
is returned, containing the index where a matching
element could be inserted while maintaining sorted order.
Examples
Looks up a series of four elements. The first is found, with a
uniquely determined position; the second and third are not
found; the fourth could match any position in [1, 4]
.
let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; assert_eq!(s.binary_search(&13), Ok(9)); assert_eq!(s.binary_search(&4), Err(7)); assert_eq!(s.binary_search(&100), Err(13)); let r = s.binary_search(&1); assert!(match r { Ok(1..=4) => true, _ => false, });
pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize> where
F: FnMut(&'a T) -> Ordering,
1.0.0[src]
pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize> where
F: FnMut(&'a T) -> Ordering,
Binary searches this sorted slice with a comparator function.
The comparator function should implement an order consistent
with the sort order of the underlying slice, returning an
order code that indicates whether its argument is Less
,
Equal
or Greater
the desired target.
If a matching value is found then returns Ok
, containing
the index for the matched element; if no match is found then
Err
is returned, containing the index where a matching
element could be inserted while maintaining sorted order.
Examples
Looks up a series of four elements. The first is found, with a
uniquely determined position; the second and third are not
found; the fourth could match any position in [1, 4]
.
let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; let seek = 13; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9)); let seek = 4; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7)); let seek = 100; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13)); let seek = 1; let r = s.binary_search_by(|probe| probe.cmp(&seek)); assert!(match r { Ok(1..=4) => true, _ => false, });
pub fn binary_search_by_key<'a, B, F>(
&'a self,
b: &B,
f: F
) -> Result<usize, usize> where
B: Ord,
F: FnMut(&'a T) -> B,
1.10.0[src]
pub fn binary_search_by_key<'a, B, F>(
&'a self,
b: &B,
f: F
) -> Result<usize, usize> where
B: Ord,
F: FnMut(&'a T) -> B,
Binary searches this sorted slice with a key extraction function.
Assumes that the slice is sorted by the key, for instance with
sort_by_key
using the same key extraction function.
If a matching value is found then returns Ok
, containing the
index for the matched element; if no match is found then Err
is returned, containing the index where a matching element could
be inserted while maintaining sorted order.
Examples
Looks up a series of four elements in a slice of pairs sorted by
their second elements. The first is found, with a uniquely
determined position; the second and third are not found; the
fourth could match any position in [1, 4]
.
let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1), (1, 2), (2, 3), (4, 5), (5, 8), (3, 13), (1, 21), (2, 34), (4, 55)]; assert_eq!(s.binary_search_by_key(&13, |&(a,b)| b), Ok(9)); assert_eq!(s.binary_search_by_key(&4, |&(a,b)| b), Err(7)); assert_eq!(s.binary_search_by_key(&100, |&(a,b)| b), Err(13)); let r = s.binary_search_by_key(&1, |&(a,b)| b); assert!(match r { Ok(1..=4) => true, _ => false, });
pub fn sort_unstable(&mut self) where
T: Ord,
1.20.0[src]
pub fn sort_unstable(&mut self) where
T: Ord,
Sorts the slice, but may not preserve the order of equal elements.
This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate),
and O(n log n)
worst-case.
Current implementation
The current algorithm is based on pattern-defeating quicksort by Orson Peters, which combines the fast average case of randomized quicksort with the fast worst case of heapsort, while achieving linear time on slices with certain patterns. It uses some randomization to avoid degenerate cases, but with a fixed seed to always provide deterministic behavior.
It is typically faster than stable sorting, except in a few special cases, e.g. when the slice consists of several concatenated sorted sequences.
Examples
let mut v = [-5, 4, 1, -3, 2]; v.sort_unstable(); assert!(v == [-5, -3, 1, 2, 4]);
pub fn sort_unstable_by<F>(&mut self, compare: F) where
F: FnMut(&T, &T) -> Ordering,
1.20.0[src]
pub fn sort_unstable_by<F>(&mut self, compare: F) where
F: FnMut(&T, &T) -> Ordering,
Sorts the slice with a comparator function, but may not preserve the order of equal elements.
This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate),
and O(n log n)
worst-case.
Current implementation
The current algorithm is based on pattern-defeating quicksort by Orson Peters, which combines the fast average case of randomized quicksort with the fast worst case of heapsort, while achieving linear time on slices with certain patterns. It uses some randomization to avoid degenerate cases, but with a fixed seed to always provide deterministic behavior.
It is typically faster than stable sorting, except in a few special cases, e.g. when the slice consists of several concatenated sorted sequences.
Examples
let mut v = [5, 4, 1, 3, 2]; v.sort_unstable_by(|a, b| a.cmp(b)); assert!(v == [1, 2, 3, 4, 5]); // reverse sorting v.sort_unstable_by(|a, b| b.cmp(a)); assert!(v == [5, 4, 3, 2, 1]);
pub fn sort_unstable_by_key<K, F>(&mut self, f: F) where
F: FnMut(&T) -> K,
K: Ord,
1.20.0[src]
pub fn sort_unstable_by_key<K, F>(&mut self, f: F) where
F: FnMut(&T) -> K,
K: Ord,
Sorts the slice with a key extraction function, but may not preserve the order of equal elements.
This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate),
and O(m n log(m n))
worst-case, where the key function is O(m)
.
Current implementation
The current algorithm is based on pattern-defeating quicksort by Orson Peters, which combines the fast average case of randomized quicksort with the fast worst case of heapsort, while achieving linear time on slices with certain patterns. It uses some randomization to avoid degenerate cases, but with a fixed seed to always provide deterministic behavior.
Examples
let mut v = [-5i32, 4, 1, -3, 2]; v.sort_unstable_by_key(|k| k.abs()); assert!(v == [1, 2, -3, 4, -5]);
pub fn rotate_left(&mut self, mid: usize)
1.26.0[src]
pub fn rotate_left(&mut self, mid: usize)
Rotates the slice in-place such that the first mid
elements of the
slice move to the end while the last self.len() - mid
elements move to
the front. After calling rotate_left
, the element previously at index
mid
will become the first element in the slice.
Panics
This function will panic if mid
is greater than the length of the
slice. Note that mid == self.len()
does not panic and is a no-op
rotation.
Complexity
Takes linear (in self.len()
) time.
Examples
let mut a = ['a', 'b', 'c', 'd', 'e', 'f']; a.rotate_left(2); assert_eq!(a, ['c', 'd', 'e', 'f', 'a', 'b']);
Rotating a subslice:
let mut a = ['a', 'b', 'c', 'd', 'e', 'f']; a[1..5].rotate_left(1); assert_eq!(a, ['a', 'c', 'd', 'e', 'b', 'f']);
pub fn rotate_right(&mut self, k: usize)
1.26.0[src]
pub fn rotate_right(&mut self, k: usize)
Rotates the slice in-place such that the first self.len() - k
elements of the slice move to the end while the last k
elements move
to the front. After calling rotate_right
, the element previously at
index self.len() - k
will become the first element in the slice.
Panics
This function will panic if k
is greater than the length of the
slice. Note that k == self.len()
does not panic and is a no-op
rotation.
Complexity
Takes linear (in self.len()
) time.
Examples
let mut a = ['a', 'b', 'c', 'd', 'e', 'f']; a.rotate_right(2); assert_eq!(a, ['e', 'f', 'a', 'b', 'c', 'd']);
Rotate a subslice:
let mut a = ['a', 'b', 'c', 'd', 'e', 'f']; a[1..5].rotate_right(1); assert_eq!(a, ['a', 'e', 'b', 'c', 'd', 'f']);
pub fn clone_from_slice(&mut self, src: &[T]) where
T: Clone,
1.7.0[src]
pub fn clone_from_slice(&mut self, src: &[T]) where
T: Clone,
Copies the elements from src
into self
.
The length of src
must be the same as self
.
If src
implements Copy
, it can be more performant to use
copy_from_slice
.
Panics
This function will panic if the two slices have different lengths.
Examples
Cloning two elements from a slice into another:
let src = [1, 2, 3, 4]; let mut dst = [0, 0]; // Because the slices have to be the same length, // we slice the source slice from four elements // to two. It will panic if we don't do this. dst.clone_from_slice(&src[2..]); assert_eq!(src, [1, 2, 3, 4]); assert_eq!(dst, [3, 4]);
Rust enforces that there can only be one mutable reference with no
immutable references to a particular piece of data in a particular
scope. Because of this, attempting to use clone_from_slice
on a
single slice will result in a compile failure:
let mut slice = [1, 2, 3, 4, 5]; slice[..2].clone_from_slice(&slice[3..]); // compile fail!
To work around this, we can use split_at_mut
to create two distinct
sub-slices from a slice:
let mut slice = [1, 2, 3, 4, 5]; { let (left, right) = slice.split_at_mut(2); left.clone_from_slice(&right[1..]); } assert_eq!(slice, [4, 5, 3, 4, 5]);
pub fn copy_from_slice(&mut self, src: &[T]) where
T: Copy,
1.9.0[src]
pub fn copy_from_slice(&mut self, src: &[T]) where
T: Copy,
Copies all elements from src
into self
, using a memcpy.
The length of src
must be the same as self
.
If src
does not implement Copy
, use clone_from_slice
.
Panics
This function will panic if the two slices have different lengths.
Examples
Copying two elements from a slice into another:
let src = [1, 2, 3, 4]; let mut dst = [0, 0]; // Because the slices have to be the same length, // we slice the source slice from four elements // to two. It will panic if we don't do this. dst.copy_from_slice(&src[2..]); assert_eq!(src, [1, 2, 3, 4]); assert_eq!(dst, [3, 4]);
Rust enforces that there can only be one mutable reference with no
immutable references to a particular piece of data in a particular
scope. Because of this, attempting to use copy_from_slice
on a
single slice will result in a compile failure:
let mut slice = [1, 2, 3, 4, 5]; slice[..2].copy_from_slice(&slice[3..]); // compile fail!
To work around this, we can use split_at_mut
to create two distinct
sub-slices from a slice:
let mut slice = [1, 2, 3, 4, 5]; { let (left, right) = slice.split_at_mut(2); left.copy_from_slice(&right[1..]); } assert_eq!(slice, [4, 5, 3, 4, 5]);
pub fn swap_with_slice(&mut self, other: &mut [T])
1.27.0[src]
pub fn swap_with_slice(&mut self, other: &mut [T])
Swaps all elements in self
with those in other
.
The length of other
must be the same as self
.
Panics
This function will panic if the two slices have different lengths.
Example
Swapping two elements across slices:
let mut slice1 = [0, 0]; let mut slice2 = [1, 2, 3, 4]; slice1.swap_with_slice(&mut slice2[2..]); assert_eq!(slice1, [3, 4]); assert_eq!(slice2, [1, 2, 0, 0]);
Rust enforces that there can only be one mutable reference to a
particular piece of data in a particular scope. Because of this,
attempting to use swap_with_slice
on a single slice will result in
a compile failure:
let mut slice = [1, 2, 3, 4, 5]; slice[..2].swap_with_slice(&mut slice[3..]); // compile fail!
To work around this, we can use split_at_mut
to create two distinct
mutable sub-slices from a slice:
let mut slice = [1, 2, 3, 4, 5]; { let (left, right) = slice.split_at_mut(2); left.swap_with_slice(&mut right[1..]); } assert_eq!(slice, [4, 5, 3, 1, 2]);
pub unsafe fn align_to<U>(&self) -> (&[T], &[U], &[T])
[src]
pub unsafe fn align_to<U>(&self) -> (&[T], &[U], &[T])
slice_align_to
)Transmute the slice to a slice of another type, ensuring aligment of the types is maintained.
This method splits the slice into three distinct slices: prefix, correctly aligned middle slice of a new type, and the suffix slice. The middle slice will have the greatest length possible for a given type and input slice.
This method has no purpose when either input element T
or output element U
are
zero-sized and will return the original slice without splitting anything.
Unsafety
This method is essentially a transmute
with respect to the elements in the returned
middle slice, so all the usual caveats pertaining to transmute::<T, U>
also apply here.
Examples
Basic usage:
unsafe { let bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7]; let (prefix, shorts, suffix) = bytes.align_to::<u16>(); // less_efficient_algorithm_for_bytes(prefix); // more_efficient_algorithm_for_aligned_shorts(shorts); // less_efficient_algorithm_for_bytes(suffix); }
pub unsafe fn align_to_mut<U>(&mut self) -> (&mut [T], &mut [U], &mut [T])
[src]
pub unsafe fn align_to_mut<U>(&mut self) -> (&mut [T], &mut [U], &mut [T])
slice_align_to
)Transmute the slice to a slice of another type, ensuring aligment of the types is maintained.
This method splits the slice into three distinct slices: prefix, correctly aligned middle slice of a new type, and the suffix slice. The middle slice will have the greatest length possible for a given type and input slice.
This method has no purpose when either input element T
or output element U
are
zero-sized and will return the original slice without splitting anything.
Unsafety
This method is essentially a transmute
with respect to the elements in the returned
middle slice, so all the usual caveats pertaining to transmute::<T, U>
also apply here.
Examples
Basic usage:
unsafe { let mut bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7]; let (prefix, shorts, suffix) = bytes.align_to_mut::<u16>(); // less_efficient_algorithm_for_bytes(prefix); // more_efficient_algorithm_for_aligned_shorts(shorts); // less_efficient_algorithm_for_bytes(suffix); }
Trait Implementations
impl<A: Array> Deref for SmallVec<A>
[src]
impl<A: Array> Deref for SmallVec<A>
type Target = [A::Item]
The resulting type after dereferencing.
fn deref(&self) -> &[A::Item]
[src]
fn deref(&self) -> &[A::Item]
Dereferences the value.
impl<A: Array> DerefMut for SmallVec<A>
[src]
impl<A: Array> DerefMut for SmallVec<A>
impl<A: Array> AsRef<[A::Item]> for SmallVec<A>
[src]
impl<A: Array> AsRef<[A::Item]> for SmallVec<A>
impl<A: Array> AsMut<[A::Item]> for SmallVec<A>
[src]
impl<A: Array> AsMut<[A::Item]> for SmallVec<A>
impl<A: Array> Borrow<[A::Item]> for SmallVec<A>
[src]
impl<A: Array> Borrow<[A::Item]> for SmallVec<A>
impl<A: Array> BorrowMut<[A::Item]> for SmallVec<A>
[src]
impl<A: Array> BorrowMut<[A::Item]> for SmallVec<A>
impl<A: Array<Item = u8>> Write for SmallVec<A>
[src]
impl<A: Array<Item = u8>> Write for SmallVec<A>
fn write(&mut self, buf: &[u8]) -> Result<usize>
[src]
fn write(&mut self, buf: &[u8]) -> Result<usize>
Write a buffer into this object, returning how many bytes were written. Read more
fn write_all(&mut self, buf: &[u8]) -> Result<()>
[src]
fn write_all(&mut self, buf: &[u8]) -> Result<()>
Attempts to write an entire buffer into this write. Read more
fn flush(&mut self) -> Result<()>
[src]
fn flush(&mut self) -> Result<()>
Flush this output stream, ensuring that all intermediately buffered contents reach their destination. Read more
fn write_fmt(&mut self, fmt: Arguments) -> Result<(), Error>
1.0.0[src]
fn write_fmt(&mut self, fmt: Arguments) -> Result<(), Error>
Writes a formatted string into this writer, returning any error encountered. Read more
fn by_ref(&mut self) -> &mut Self
1.0.0[src]
fn by_ref(&mut self) -> &mut Self
Creates a "by reference" adaptor for this instance of Write
. Read more
impl<'a, A: Array> From<&'a [A::Item]> for SmallVec<A> where
A::Item: Clone,
[src]
impl<'a, A: Array> From<&'a [A::Item]> for SmallVec<A> where
A::Item: Clone,
ⓘImportant traits for SmallVec<A>fn from(slice: &'a [A::Item]) -> SmallVec<A>
[src]
fn from(slice: &'a [A::Item]) -> SmallVec<A>
Performs the conversion.
impl<A: Array> From<Vec<A::Item>> for SmallVec<A>
[src]
impl<A: Array> From<Vec<A::Item>> for SmallVec<A>
ⓘImportant traits for SmallVec<A>fn from(vec: Vec<A::Item>) -> SmallVec<A>
[src]
fn from(vec: Vec<A::Item>) -> SmallVec<A>
Performs the conversion.
impl<A: Array> From<A> for SmallVec<A>
[src]
impl<A: Array> From<A> for SmallVec<A>
impl<A: Array> Index<usize> for SmallVec<A>
[src]
impl<A: Array> Index<usize> for SmallVec<A>
type Output = A::Item
The returned type after indexing.
fn index(&self, index: usize) -> &A::Item
[src]
fn index(&self, index: usize) -> &A::Item
Performs the indexing (container[index]
) operation.
impl<A: Array> IndexMut<usize> for SmallVec<A>
[src]
impl<A: Array> IndexMut<usize> for SmallVec<A>
fn index_mut(&mut self, index: usize) -> &mut A::Item
[src]
fn index_mut(&mut self, index: usize) -> &mut A::Item
Performs the mutable indexing (container[index]
) operation.
impl<A: Array> Index<Range<usize>> for SmallVec<A>
[src]
impl<A: Array> Index<Range<usize>> for SmallVec<A>
type Output = [A::Item]
The returned type after indexing.
fn index(&self, index: Range<usize>) -> &[A::Item]
[src]
fn index(&self, index: Range<usize>) -> &[A::Item]
Performs the indexing (container[index]
) operation.
impl<A: Array> IndexMut<Range<usize>> for SmallVec<A>
[src]
impl<A: Array> IndexMut<Range<usize>> for SmallVec<A>
fn index_mut(&mut self, index: Range<usize>) -> &mut [A::Item]
[src]
fn index_mut(&mut self, index: Range<usize>) -> &mut [A::Item]
Performs the mutable indexing (container[index]
) operation.
impl<A: Array> Index<RangeFrom<usize>> for SmallVec<A>
[src]
impl<A: Array> Index<RangeFrom<usize>> for SmallVec<A>
type Output = [A::Item]
The returned type after indexing.
fn index(&self, index: RangeFrom<usize>) -> &[A::Item]
[src]
fn index(&self, index: RangeFrom<usize>) -> &[A::Item]
Performs the indexing (container[index]
) operation.
impl<A: Array> IndexMut<RangeFrom<usize>> for SmallVec<A>
[src]
impl<A: Array> IndexMut<RangeFrom<usize>> for SmallVec<A>
fn index_mut(&mut self, index: RangeFrom<usize>) -> &mut [A::Item]
[src]
fn index_mut(&mut self, index: RangeFrom<usize>) -> &mut [A::Item]
Performs the mutable indexing (container[index]
) operation.
impl<A: Array> Index<RangeTo<usize>> for SmallVec<A>
[src]
impl<A: Array> Index<RangeTo<usize>> for SmallVec<A>
type Output = [A::Item]
The returned type after indexing.
fn index(&self, index: RangeTo<usize>) -> &[A::Item]
[src]
fn index(&self, index: RangeTo<usize>) -> &[A::Item]
Performs the indexing (container[index]
) operation.
impl<A: Array> IndexMut<RangeTo<usize>> for SmallVec<A>
[src]
impl<A: Array> IndexMut<RangeTo<usize>> for SmallVec<A>
fn index_mut(&mut self, index: RangeTo<usize>) -> &mut [A::Item]
[src]
fn index_mut(&mut self, index: RangeTo<usize>) -> &mut [A::Item]
Performs the mutable indexing (container[index]
) operation.
impl<A: Array> Index<RangeFull> for SmallVec<A>
[src]
impl<A: Array> Index<RangeFull> for SmallVec<A>
type Output = [A::Item]
The returned type after indexing.
fn index(&self, index: RangeFull) -> &[A::Item]
[src]
fn index(&self, index: RangeFull) -> &[A::Item]
Performs the indexing (container[index]
) operation.
impl<A: Array> IndexMut<RangeFull> for SmallVec<A>
[src]
impl<A: Array> IndexMut<RangeFull> for SmallVec<A>
fn index_mut(&mut self, index: RangeFull) -> &mut [A::Item]
[src]
fn index_mut(&mut self, index: RangeFull) -> &mut [A::Item]
Performs the mutable indexing (container[index]
) operation.
impl<A: Array> ExtendFromSlice<A::Item> for SmallVec<A> where
A::Item: Copy,
[src]
impl<A: Array> ExtendFromSlice<A::Item> for SmallVec<A> where
A::Item: Copy,
fn extend_from_slice(&mut self, other: &[A::Item])
[src]
fn extend_from_slice(&mut self, other: &[A::Item])
Extends a collection from a slice of its element type
impl<A: Array> VecLike<A::Item> for SmallVec<A>
[src]
impl<A: Array> VecLike<A::Item> for SmallVec<A>
fn push(&mut self, value: A::Item)
[src]
fn push(&mut self, value: A::Item)
: Use Extend
and Deref<[T]>
instead
Append an element to the vector.
impl<A: Array> FromIterator<A::Item> for SmallVec<A>
[src]
impl<A: Array> FromIterator<A::Item> for SmallVec<A>
ⓘImportant traits for SmallVec<A>fn from_iter<I: IntoIterator<Item = A::Item>>(iterable: I) -> SmallVec<A>
[src]
fn from_iter<I: IntoIterator<Item = A::Item>>(iterable: I) -> SmallVec<A>
Creates a value from an iterator. Read more
impl<A: Array> Extend<A::Item> for SmallVec<A>
[src]
impl<A: Array> Extend<A::Item> for SmallVec<A>
fn extend<I: IntoIterator<Item = A::Item>>(&mut self, iterable: I)
[src]
fn extend<I: IntoIterator<Item = A::Item>>(&mut self, iterable: I)
Extends a collection with the contents of an iterator. Read more
impl<A: Array> Debug for SmallVec<A> where
A::Item: Debug,
[src]
impl<A: Array> Debug for SmallVec<A> where
A::Item: Debug,
fn fmt(&self, f: &mut Formatter) -> Result
[src]
fn fmt(&self, f: &mut Formatter) -> Result
Formats the value using the given formatter. Read more
impl<A: Array> Default for SmallVec<A>
[src]
impl<A: Array> Default for SmallVec<A>
ⓘImportant traits for SmallVec<A>fn default() -> SmallVec<A>
[src]
fn default() -> SmallVec<A>
Returns the "default value" for a type. Read more
impl<A: Array> Drop for SmallVec<A>
[src]
impl<A: Array> Drop for SmallVec<A>
impl<A: Array> Clone for SmallVec<A> where
A::Item: Clone,
[src]
impl<A: Array> Clone for SmallVec<A> where
A::Item: Clone,
ⓘImportant traits for SmallVec<A>fn clone(&self) -> SmallVec<A>
[src]
fn clone(&self) -> SmallVec<A>
Returns a copy of the value. Read more
fn clone_from(&mut self, source: &Self)
1.0.0[src]
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from source
. Read more
impl<A: Array, B: Array> PartialEq<SmallVec<B>> for SmallVec<A> where
A::Item: PartialEq<B::Item>,
[src]
impl<A: Array, B: Array> PartialEq<SmallVec<B>> for SmallVec<A> where
A::Item: PartialEq<B::Item>,
fn eq(&self, other: &SmallVec<B>) -> bool
[src]
fn eq(&self, other: &SmallVec<B>) -> bool
This method tests for self
and other
values to be equal, and is used by ==
. Read more
fn ne(&self, other: &SmallVec<B>) -> bool
[src]
fn ne(&self, other: &SmallVec<B>) -> bool
This method tests for !=
.
impl<A: Array> Eq for SmallVec<A> where
A::Item: Eq,
[src]
impl<A: Array> Eq for SmallVec<A> where
A::Item: Eq,
impl<A: Array> PartialOrd for SmallVec<A> where
A::Item: PartialOrd,
[src]
impl<A: Array> PartialOrd for SmallVec<A> where
A::Item: PartialOrd,
fn partial_cmp(&self, other: &SmallVec<A>) -> Option<Ordering>
[src]
fn partial_cmp(&self, other: &SmallVec<A>) -> Option<Ordering>
This method returns an ordering between self
and other
values if one exists. Read more
#[must_use]
fn lt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]
fn lt(&self, other: &Rhs) -> bool
This method tests less than (for self
and other
) and is used by the <
operator. Read more
#[must_use]
fn le(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]
fn le(&self, other: &Rhs) -> bool
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
#[must_use]
fn gt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]
fn gt(&self, other: &Rhs) -> bool
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
#[must_use]
fn ge(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]
fn ge(&self, other: &Rhs) -> bool
This method tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
impl<A: Array> Ord for SmallVec<A> where
A::Item: Ord,
[src]
impl<A: Array> Ord for SmallVec<A> where
A::Item: Ord,
fn cmp(&self, other: &SmallVec<A>) -> Ordering
[src]
fn cmp(&self, other: &SmallVec<A>) -> Ordering
This method returns an Ordering
between self
and other
. Read more
fn max(self, other: Self) -> Self
1.21.0[src]
fn max(self, other: Self) -> Self
Compares and returns the maximum of two values. Read more
fn min(self, other: Self) -> Self
1.21.0[src]
fn min(self, other: Self) -> Self
Compares and returns the minimum of two values. Read more
impl<A: Array> Hash for SmallVec<A> where
A::Item: Hash,
[src]
impl<A: Array> Hash for SmallVec<A> where
A::Item: Hash,
fn hash<H: Hasher>(&self, state: &mut H)
[src]
fn hash<H: Hasher>(&self, state: &mut H)
Feeds this value into the given [Hasher
]. Read more
fn hash_slice<H>(data: &[Self], state: &mut H) where
H: Hasher,
1.3.0[src]
fn hash_slice<H>(data: &[Self], state: &mut H) where
H: Hasher,
Feeds a slice of this type into the given [Hasher
]. Read more
impl<A: Array> Send for SmallVec<A> where
A::Item: Send,
[src]
impl<A: Array> Send for SmallVec<A> where
A::Item: Send,
impl<A: Array> IntoIterator for SmallVec<A>
[src]
impl<A: Array> IntoIterator for SmallVec<A>
type IntoIter = IntoIter<A>
Which kind of iterator are we turning this into?
type Item = A::Item
The type of the elements being iterated over.
fn into_iter(self) -> Self::IntoIter
[src]
fn into_iter(self) -> Self::IntoIter
Creates an iterator from a value. Read more
impl<'a, A: Array> IntoIterator for &'a SmallVec<A>
[src]
impl<'a, A: Array> IntoIterator for &'a SmallVec<A>
type IntoIter = Iter<'a, A::Item>
Which kind of iterator are we turning this into?
type Item = &'a A::Item
The type of the elements being iterated over.
fn into_iter(self) -> Self::IntoIter
[src]
fn into_iter(self) -> Self::IntoIter
Creates an iterator from a value. Read more
impl<'a, A: Array> IntoIterator for &'a mut SmallVec<A>
[src]
impl<'a, A: Array> IntoIterator for &'a mut SmallVec<A>